http://iet.metastore.ingenta.com
1887

Band selection of hyperspectral image by sparse manifold clustering

Band selection of hyperspectral image by sparse manifold clustering

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Band selection of hyperspectral images is an optimal feature selection method, which aims at reducing the computational burden associated with processing the whole data. The significant and informative bands identified by the band selection process lead to efficient, compact representation of the image data and produce a satisfactory performance in the succeeding applications viz. classification, unmixing, target detection and so on. In this study, the authors present an unsupervised manifold clustering approach for band selection, which accounts for different types of scenarios. Unlike other band selection approaches, the authors’ proposed manifold clustering framework identifies the informative bands by utilising the interrelation between the bands and accounts for the multi-manifold structure prevalent in some real images. The proposed band selection framework identifies the optimal number of clusters by cluster validity index, clusters the bands by manifold clustering and select representative bands from each cluster according to graph weight. Their proposed manifold clustering approach is a generic clustering approach, which produces a satisfactory result even when the data contains non-linearity. The information theoretic performance measures, classification and unmixing performance on real image experiments demonstrate the proficiency of their proposed band selection algorithm.

References

    1. 1)
      • 1. Chang, C.-I.: ‘Hyperspectral data processing: algorithm design and analysis’ (John Wiley & Sons, Hoboken, New Jersey, 2013).
    2. 2)
      • 2. Chang, C.-I., Du, Q., Sun, T.-L., et al: ‘A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (6), pp. 26312641.
    3. 3)
      • 3. Murthy, C.: ‘Bridging feature selection and extraction: compound feature generation’, IEEE Trans. Knowl. Data Eng., 2017, 29, (4), pp. 757770.
    4. 4)
      • 4. Deng, Y.-J., Li, H.-C., Pan, L., et al: ‘Modified tensor locality preserving projection for dimensionality reduction of hyperspectral images’, IEEE Geosci. Remote Sens. Lett., 2018, 15, (2), pp. 277281.
    5. 5)
      • 5. Luo, F., Huang, H., Ma, Z., et al: ‘Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (10), pp. 61976211.
    6. 6)
      • 6. Luo, F., Du, B., Zhang, L., et al: ‘Feature learning using spatial-spectral hypergraph discriminant analysis for hyperspectral image’, IEEE Trans. Cybern., 2018, 49, (7), pp. 24062419.
    7. 7)
      • 7. Bevilacqua, M., Berthoumieu, Y.: ‘Unsupervised hyperspectral band selection via multi-feature information-maximization clustering’. 2017 IEEE Int. Conf. on Image Processing (ICIP), Beijing, China, 2017, pp. 540544.
    8. 8)
      • 8. Guo, B., Gunn, S.R., Damper, R.I., et al: ‘Band selection for hyperspectral image classification using mutual information’, IEEE Geosci. Remote Sens. Lett., 2006, 3, (4), pp. 522526.
    9. 9)
      • 9. Luo, X., Xue, R., Yin, J.: ‘Information-assisted density peak index for hyperspectral band selection’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (10), pp. 18701874.
    10. 10)
      • 10. Chang, C.-I., Lee, L.-C., Xue, B., et al: ‘Channel capacity approach to hyperspectral band subset selection’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2017, 10, (10), pp. 46304644.
    11. 11)
      • 11. Du, H., Qi, H., Wang, X., et al: ‘Band selection using independent component analysis for hyperspectral image processing’. Proc. IEEE 32nd Applied Imagery Pattern Recognition Workshop, 2003, Washington DC, USA, 2003, pp. 9398.
    12. 12)
      • 12. Feng, J., Jiao, L., Zhang, X., et al: ‘Hyperspectral band selection based on trivariate mutual information and clonal selection’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (7), pp. 40924105.
    13. 13)
      • 13. Feng, J., Jiao, L., Liu, F., et al: ‘Mutual-information-based semisupervised hyperspectral band selection with high discrimination, high information, and low redundancy’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (5), pp. 29562969.
    14. 14)
      • 14. Yuan, Y., Zheng, X., Lu, X.: ‘Discovering diverse subset for unsupervised hyperspectral band selection’, IEEE Trans. Image Process., 2017, 26, (1), pp. 5164.
    15. 15)
      • 15. Sun, W., Tian, L., Xu, Y., et al: ‘Fast and robust self-representation method for hyperspectral band selection’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2017, 10, (11), pp. 50875098.
    16. 16)
      • 16. Sun, W., Zhang, L., Zhang, L., et al: ‘A dissimilarity-weighted sparse self-representation method for band selection in hyperspectral imagery classification’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2016, 9, (9), pp. 43744388.
    17. 17)
      • 17. Wang, C., Gong, M., Zhang, M., et al: ‘Unsupervised hyperspectral image band selection via column subset selection’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (7), pp. 14111415.
    18. 18)
      • 18. Yuan, Y., Zhu, G., Wang, Q.: ‘Hyperspectral band selection by multitask sparsity pursuit’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (2), pp. 631644.
    19. 19)
      • 19. Zhu, G., Huang, Y., Li, S., et al: ‘Hyperspectral band selection via rank minimization’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (12), pp. 23202324.
    20. 20)
      • 20. Chang, C.I., Wang, S.: ‘Constrained band selection for hyperspectral imagery’, IEEE Trans. Geosci. Remote Sens., 2006, 44, (6), pp. 15751585.
    21. 21)
      • 21. Du, Q., Bioucas-Dias, J.M., Plaza, A.: ‘Hyperspectral band selection using a collaborative sparse model’. 2012 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Munich, Germany, 2012, pp. 30543057.
    22. 22)
      • 22. Li, S., Qi, H.: ‘Sparse representation based band selection for hyperspectral images’. 2011 18th IEEE Int. Conf. on Image Processing (ICIP), Brussels, Belgium, 2011, pp. 26932696.
    23. 23)
      • 23. Wang, L., Li, H.-C., Xue, B., et al: ‘Constrained band subset selection for hyperspectral imagery’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (11), pp. 20322036.
    24. 24)
      • 24. Yuan, Y., Lin, J., Wang, Q.: ‘Dual-clustering-based hyperspectral band selection by contextual analysis’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (3), pp. 14311445.
    25. 25)
      • 25. Zhang, F., Wang, Q., Li, X.: ‘Hyperspectral image band selection via global optimal clustering’. 2017 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Fort Worth, USA, 2017, pp. 14.
    26. 26)
      • 26. Wang, Q., Zhang, F., Li, X.: ‘Optimal clustering framework for hyperspectral band selection’, IEEE Trans. Geosci. Remote Sens., 2018, 56, (10), pp. 113.
    27. 27)
      • 27. Sun, W., Zhang, L., Du, B., et al: ‘Band selection using improved sparse subspace clustering for hyperspectral imagery classification’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (6), pp. 27842797.
    28. 28)
      • 28. Sun, K., Geng, X., Ji, L., et al: ‘A new band selection method for hyperspectral image based on data quality’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (6), pp. 26972703.
    29. 29)
      • 29. Geng, X., Sun, K., Ji, L., et al: ‘A fast volume-gradient-based band selection method for hyperspectral image’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (11), pp. 71117119.
    30. 30)
      • 30. Su, H., Yong, B., Du, Q.: ‘Hyperspectral band selection using improved firefly algorithm’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (1), pp. 6872.
    31. 31)
      • 31. Zhu, G., Huang, Y., Lei, J., et al: ‘Unsupervised hyperspectral band selection by dominant set extraction’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (1), pp. 227239.
    32. 32)
      • 32. Sun, K., Shuai, T., Chen, J., et al: ‘An efficient band selection method for hyperspectral imageries based on covariance matrix’. 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, USA, 2016, pp. 14.
    33. 33)
      • 33. Zhang, W., Li, X., Dou, Y., et al: ‘A geometry-based band selection approach for hyperspectral image analysis’, IEEE Trans. Geosci. Remote Sens., 2018, 56, (8), pp. 43184333.
    34. 34)
      • 34. Qian, Y., Yao, F., Jia, S.: ‘Band selection for hyperspectral imagery using affinity propagation’, IET Comput. Vis., 2009, 3, (4), pp. 213222.
    35. 35)
      • 35. Su, H., Cai, Y., Du, Q.: ‘Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2017, 10, (1), pp. 309320.
    36. 36)
      • 36. Su, H., Du, Q., Chen, G., et al: ‘Optimized hyperspectral band selection using particle swarm optimization’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (6), pp. 26592670.
    37. 37)
      • 37. Jia, S., Ji, Z., Qian, Y., et al: ‘Unsupervised band selection for hyperspectral imagery classification without manual band removal’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2012, 5, (2), pp. 531543.
    38. 38)
      • 38. Luo, F., Huang, H., Duan, Y., et al: ‘Local geometric structure feature for dimensionality reduction of hyperspectral imagery’, Remote Sens., 2017, 9, (8), p. 790.
    39. 39)
      • 39. Imbiriba, T., Bermudez, J.C.M., Richard, C.: ‘Band selection for nonlinear unmixing of hyperspectral images as a maximal clique problem’, IEEE Trans. Image Process., 2017, 26, (5), pp. 21792191.
    40. 40)
      • 40. Wang, Q., Lin, J., Yuan, Y.: ‘Salient band selection for hyperspectral image classification via manifold ranking’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (6), pp. 12791289.
    41. 41)
      • 41. Lunga, D., Prasad, S., Crawford, M.M., et al: ‘Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning’, IEEE Signal Process. Mag., 2014, 31, (1), pp. 5566.
    42. 42)
      • 42. Elhamifar, E., Vidal, R.: ‘Sparse manifold clustering and embedding’. Advances in Neural Information Processing Systems, Granada, Spain, 2011, pp. 5563.
    43. 43)
      • 43. Souvenir, R., Pless, R.: ‘Manifold clustering’. Tenth IEEE Int. Conf. on Computer Vision, 2005, ICCV 2005, Beijing, China, 2005, Vol. 1, pp. 648653.
    44. 44)
      • 44. Roweis, S.T., Saul, L.K.: ‘Nonlinear dimensionality reduction by locally linear embedding’, Science, 2000, 290, (5500), pp. 23232326.
    45. 45)
      • 45. Liu, Y., Li, Z., Xiong, H., et al: ‘Understanding of internal clustering validation measures’. 2010 IEEE 10th Int. Conf. on Data Mining (ICDM), Sydney, Australia, 2010, pp. 911916.
    46. 46)
      • 46. Halkidi, M., Vazirgiannis, M.: ‘Clustering validity assessment: finding the optimal partitioning of a data set’. Proc. IEEE Int. Conf. on Data Mining, 2001, ICDM 2001, San Jose, USA, 2001, pp. 187194.
    47. 47)
      • 47. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., et al: ‘Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2012, 5, (2), pp. 354379.
    48. 48)
      • 48. Chang, C.-I., Du, Q.: ‘Estimation of number of spectrally distinct signal sources in hyperspectral imagery’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (3), pp. 608619.
    49. 49)
      • 49. Bioucas-Dias, J.M.: ‘A variable splitting augmented Lagrangian approach to linear spectral unmixing’. First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009, WHISPERS'09 IEEE, Grenoble, France, 2009, pp. 14.
    50. 50)
      • 50. Bioucas-Dias, J. M., Figueiredo, M. A.: ‘Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing’. 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland, 2010, pp. 14.
    51. 51)
      • 51. https://engineering.purdue.edu/biehl/multispec/..
    52. 52)
      • 52. Du, Q., Yang, H.: ‘Similarity-based unsupervised band selection for hyperspectral image analysis’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (4), pp. 564568.
    53. 53)
      • 53. Green, P.E., Kim, J., Shandler, B.: ‘Predictive accuracy of classification and regression trees (cart) versus conjoint analysis’. Proc. of the 1990 Academy of Marketing Science (AMS) Annual Conf., Cham, Germany, 2015, pp. 366370.
    54. 54)
      • 54. Melgani, F., Bruzzone, L.: ‘Classification of hyperspectral remote sensing images with support vector machines’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (8), pp. 17781790.
    55. 55)
      • 55. Romero, A., Gatta, C., Camps-Valls, G.: ‘Unsupervised deep feature extraction for remote sensing image classification’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (3), pp. 13491362.
    56. 56)
      • 56. Chang, C.-C., Lin, C.-J.: ‘Libsvm: a library for support vector machines’, ACM Trans. Intell. Syst. Technol. (TIST), 2011, 2, (3), p. 27.
    57. 57)
      • 57. Romero, A., Radeva, P., Gatta, C.: ‘No more meta-parameter tuning in unsupervised sparse feature learning’, arXiv preprint arXiv:1402.5766, 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5423
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5423
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address