http://iet.metastore.ingenta.com
1887

Non-local weighted fuzzy energy-based active contour model with level set evolution starting with a constant function

Non-local weighted fuzzy energy-based active contour model with level set evolution starting with a constant function

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In the traditional active contour models, global region-based methods fail to segment images with intensity inhomogeneity, and local region-based methods are sensitive to initial contour. In this study, a novel fuzzy energy-based active contour model is proposed to segment medical images, which are always corrupted by intensity inhomogeneity. In order to deal with intensity inhomogeneity, a local energy term is first constructed by substituting a non-local weight for Gaussian kernel widely used in traditional local region-based models. Second, the defined adaptive force can drive the level set function to adaptively increase or decrease according to image intensity information. Therefore, the initial contour can be initialised as a constant function, which eliminates the problem caused by contour initialisation. Moreover, the proposed active contour model is a convex function. Thus, the problem, resulting from optimising a non-convex functional in the traditional active contour models, can be avoided. Experimental results validate the superiorities and effectiveness of the proposed model for image segmentation with comparisons of those yielded by several state-of-the-art techniques.

References

    1. 1)
      • 1. Li, C., Kao, C., Gore, J., et al: ‘Minimization of region-scalable fitting energy for image segmentation’, IEEE Trans. Image Process., 2008, 17, (10), pp. 19401949.
    2. 2)
      • 2. Lv, H., Wang, Z., Fu, S., et al: ‘A robust active contour segmentation based on fractional-order differentiation and fuzzy energy’, IEEE. Access, 2017, 5, pp. 77537761.
    3. 3)
      • 3. Xu, H., Jiang, G., Yu, M., et al: ‘A local Gaussian distribution fitting energy-based active contour model for image segmentation’, Comput. Electr. Eng., 2018, 70, pp. 317333.
    4. 4)
      • 4. Ilunga-Mbuyamba, E., Avina-Cervantes, J., Garcia-Perez, A., et al: ‘Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation’, Neurocomputing, 2017, 220, pp. 8497.
    5. 5)
      • 5. Chen, Y.: ‘A novel approach to segmentation and measurement of medical image using level set methods’, Magn. Reson. Imaging, 2017, 39, pp. 175193.
    6. 6)
      • 6. Bai, P., Liu, Q., Li, L., et al: ‘A novel region-based level set method initialized with mean shift clustering for automated medical image segmentation’, Comput. Biol. Med., 2013, 43, (11), pp. 18271832.
    7. 7)
      • 7. Wang, W., Zhou, L., Qin, J., et al: ‘Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion’, Opt. Laser Eng., 2014, 54, pp. 105116.
    8. 8)
      • 8. Zheng, Q., Lu, Z., Yang, W., et al: ‘A robust medical image segmentation method using KL distance and local neighborhood information’, Comput. Biol. Med., 2013, 43, (5), pp. 459470.
    9. 9)
      • 9. Caselles, V., Catté, F., Coll, T., et al: ‘A geometric model for active contours in image processing’, Numer. Math., 1993, 66, (1), pp. 131.
    10. 10)
      • 10. Caselles, V., Kimmel, R., Sapiro, G.: ‘Geodesic active contours’, Int. J. Comput. Vision, 1997, 22, (1), pp. 6179.
    11. 11)
      • 11. Gooya, A., Liao, H., Sakuma, I.: ‘Generalization of geometrical flux maximizing flow on Riemannian manifolds for improved volumetric blood vessel segmentation’, Comput. Med. Imag. Graph., 2012, 36, (6), pp. 474483.
    12. 12)
      • 12. Li, C., Xu, C., Gui, C., et al: ‘Level set evolution without re-initialization: a new variational formulation’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, USA, July 2005, pp. 430436.
    13. 13)
      • 13. Chan, T., Vese, L.: ‘Active contour model without edges’, IEEE Trans. Image Process., 2001, 10, (2), pp. 266277.
    14. 14)
      • 14. Li, C., Kao, C., Gore, J., et al: ‘Implicit active contours driven by local binary fitting energy’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, July 2007, pp. 17.
    15. 15)
      • 15. Mumford, D., Shah, J.: ‘Optimal approximations by piecewise smooth functions and associated variational problems’, Commun. Pure Appl. Anal., 1989, 42, (5), pp. 577685.
    16. 16)
      • 16. Wang, L., Li, C., Sun, Q., et al: ‘Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation’, Comput. Med. Imag. Graph., 2009, 33, (7), pp. 520531.
    17. 17)
      • 17. Zhang, K., Song, H., Zhang, L.: ‘Active contours driven by local image fitting energy’, Pattern Recognit., 2010, 43, (4), pp. 11991206.
    18. 18)
      • 18. Zhang, K., Zhang, L., Song, H., et al: ‘Active contours with selective local or global segmentation: a new formulation and level set method’, Image Vision Comput., 2010, 28, (4), pp. 668676.
    19. 19)
      • 19. Fang, L., Zhao, W., Li, X., et al: ‘A convex active contour model driven by local entropy energy with applications to infrared ship target segmentation’, Opt. Laser Technol., 2017, 96, pp. 166175.
    20. 20)
      • 20. Tu, S., Su, Y., Li, Y.: ‘Convex active contour model for target detection in synthetic aperture radar images’, J. Appl. Remote Sens., 2015, 9, (1), pp. 124.
    21. 21)
      • 21. Wu, Y., He, C.: ‘A convex variational level set model for image segmentation’, Signal Process., 2015, 106, pp. 123133.
    22. 22)
      • 22. Mondal, A., Ghosh, S., Ghosh, A.: ‘Robust global and local fuzzy energy based active contour for image segmentation’, Appl. Soft Comput., 2016, 47, pp. 191215.
    23. 23)
      • 23. Zhang, K., Zhang, L., Lam, K.M., et al: ‘A level set approach to image segmentation with intensity inhomogeneity’, IEEE Trans. Cybern., 2016, 46, (2), pp. 351369.
    24. 24)
      • 24. Li, C., Huang, R., Ding, Z., et al: ‘A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI’, IEEE Trans. Image Process., 2011, 20, (7), pp. 20072016.
    25. 25)
      • 25. Chen, Y., Zhang, J., Macione, J.: ‘An improved level set method for brain MR images segmentation and bias correction’, Comput. Med. Imaging Graph., 2009, 33, (7), pp. 510519.
    26. 26)
      • 26. Wang, L., Pan, C.: ‘Robust level set image segmentation via a local correntropy-based K-means clustering’, Pattern Recognit., 2014, 47, (5), pp. 19171925.
    27. 27)
      • 27. Krinidis, S., Chatzis, V.: ‘Fuzzy energy-based active contours’, IEEE Trans. Image Process., 2009, 18, (12), pp. 27472755.
    28. 28)
      • 28. Wu, Y., Ma, W., Gong, M., et al: ‘Novel fuzzy active contour model with Kernel metric for image segmentation’, Appl. Soft Comput., 2015, 34, pp. 301311.
    29. 29)
      • 29. Chen, Y., Yue, X., Da, X., et al: ‘Region scalable active contour model with global constraint’, Knowl. Based Syst., 2017, 120, pp. 5773.
    30. 30)
      • 30. Zhang, Y., Guo, H., Chen, F., et al: ‘Weighted kernel mapping model with spring simulation based watershed transformation for level set image segmentation’, Neurocomputing, 2017, 249, pp. 118.
    31. 31)
      • 31. Li, S., Li, X.: ‘Radial basis functions and level set method for image segmentation using partial differential equation’, Appl. Math. Comput., 2016, 286, pp. 2940.
    32. 32)
      • 32. Buades, A., Coll, B., Morel, J.: ‘A non-local algorithm for image denoising’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, USA, July 2005, pp. 6065.
    33. 33)
      • 33. Huang, Z., Li, Q., Zhang, T., et al: ‘Iterative weighted sparse representation for X-ray cardiovascular angiogram image denoising over learned dictionary’, IET Image Process., 2017, 12, (2), pp. 254261.
    34. 34)
      • 34. Huang, Z., Li, Q., Zhang, T., et al: ‘Spatially adaptive denoising for X-ray cardiovascular angiogram images’, Biomed. Signal Process., 2018, 40, pp. 131139.
    35. 35)
      • 35. Koenderink, J.: ‘The structure of images’, Biol. Cybern., 1984, 50, (5), pp. 363370.
    36. 36)
      • 36. Gong, M., Tian, D., Su, L., et al: ‘An efficient bi-convex fuzzy variational image segmentation method’, Inf. Sci., 2015, 293, pp. 351369.
    37. 37)
      • 37. Shi, Y., Karl, W.: ‘Real-time tracking using level sets’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, USA, July 2005, pp. 3441.
    38. 38)
      • 38. Vovk, U., Pernus, F., Likar, B.: ‘A review of methods for correction of intensity inhomogeneity in MRI’, IEEE Trans. Med. Imaging, 2007, 26, (3), pp. 405421.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5420
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5420
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address