Your browser does not support JavaScript!

Dimensionality reduction based on determinantal point process and singular spectrum analysis for hyperspectral images

Dimensionality reduction based on determinantal point process and singular spectrum analysis for hyperspectral images

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Dimensionality reduction is of high importance in hyperspectral data processing, which can effectively reduce the data redundancy and computation time for improved classification accuracy. Band selection and feature extraction methods are two widely used dimensionality reduction techniques. By integrating the advantages of the band selection and feature extraction, the authors propose a new method for reducing the dimension of hyperspectral image data. First, a new and fast band selection algorithm is proposed for hyperspectral images based on an improved determinantal point process (DPP). To reduce the amount of calculation, the dual-DPP is used for fast sampling representative pixels, followed by k-nearest neighbour-based local processing to explore more spatial information. These representative pixel points are used to construct multiple adjacency matrices to describe the correlation between bands based on mutual information. To further improve the classification accuracy, two-dimensional singular spectrum analysis is used for feature extraction from the selected bands. Experiments show that the proposed method can select a low-redundancy and representative band subset, where both data dimension and computation time can be reduced. Furthermore, it also shows that the proposed dimensionality reduction algorithm outperforms a number of state-of-the-art methods in terms of classification accuracy.

Related content

This is a required field
Please enter a valid email address