access icon free Detection of vehicle wheels from images using a pseudo-wavelet filter for analysis of congested traffic

There is potential for significant savings if the safety of existing bridges can be more accurately assessed. For long-span bridges, congestion is the governing traffic load condition. The current methods of simulating congestion make assumptions about the axle-to-axle gaps maintained between vehicles. There is potential for improvement in congestion models if accurate data on axle-to-axle gaps can be obtained. In this study, the use of a camera to collect this information is put forward. A new image processing technique is proposed to detect wheels in variable light conditions. The method is based on a pseudo-wavelet filter that amplifies circles, in conjunction with an algorithm that weights features in the image according to their circularity. This new approach is compared with the Hough transform, template matching and the deformable part-based model (DPM) methods previously developed. In a sample set of 80 images, 96.9% of wheels are detected, considerably more than with the Hough transform and template matching methods. It also provides the same level of accuracy as DPM without requiring a training process.

Inspec keywords: image filtering; image matching; road traffic; Hough transforms; wheels; bridges (structures)

Other keywords: deformable part-based model methods; vehicle wheel detection; template matching; existing bridge safety; variable light conditions; governing traffic load condition; Hough transform; pseudowavelet filter; image processing technique; long-span bridges; congested traffic; axle-to-axle gaps

Subjects: Integral transforms in numerical analysis; Integral transforms in numerical analysis; Image recognition; Computer vision and image processing techniques

References

    1. 1)
      • 41. Ids image development systems gmbh: https://en.ids-imaging.com/home.html.
    2. 2)
      • 43. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, (6), pp. 679698.
    3. 3)
      • 19. Achler, O., Trivedi, M.M.: ‘Vehicle wheel detector using 2D filter banks’. IEEE Intelligent Vehicles Symp., Parma, Italy, 2004.
    4. 4)
      • 13. Knospe, W., Santen, L., Schadschneider, A., et al: ‘Single-vehicle data of highway traffic: microscopic description of traffic phases’, Phys. Rev. E, 2002, 65, (5), p. 056133.
    5. 5)
      • 29. Abdel-Kader, R.F., Atta, R., El-Shakhabe, S.: ‘An efficient eye detection and tracking system based on particle swarm optimization and adaptive block-matching search algorithm’, Eng. Appl. Artif. Intell., 2014, 31, pp. 90100.
    6. 6)
      • 5. Nowak, A.S., Lutomirska, M.: ‘Live load models for long span bridges’. Tenth ICOSSAR Int. Conf. Structural Safety and Reliability, Osaka, Japan, 2009.
    7. 7)
      • 7. Ghosh-Dastidar, S., Adeli, H.: ‘Neural network-wavelet microsimulation model for delay and queue length estimation at freeway work zones’, J. Trans. Eng. ASCE, 2006, 132, (4), pp. 331341.
    8. 8)
      • 3. Bruls, A., Calgaro, J., Mathieu, H., et al: ‘Env 1991, part 3: the main models of traffic loads on road bridges background studies’. IABSE Reports, 1996, pp. 215228.
    9. 9)
      • 10. Treiber, M., Hennecke, A., Helbing, D.: ‘Microscopic simulation of congested traffic’, in (Eds.): ‘Traffic and granular flow’, (2000).
    10. 10)
      • 39. Razavi, N., Gall, J., Van Gool, L.: ‘Scalable multi-class object detection’. 2011 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 2011.
    11. 11)
      • 18. Achler, O., Trivedi, M.M.: ‘Camera based vehicle detection, tracking, and wheel baseline estimation approach’. The Seventh Int. IEEE Conf. Intelligent Transportation Systems, Washington, WA, USA, 2004.
    12. 12)
      • 27. Oliva, D., Cuevas, E., Pajares, G., et al: ‘Template matching using an improved electromagnetism-like algorithm’, Appl. Intell., 2014, 41, (3), pp. 791807.
    13. 13)
      • 8. Nagel, K., Schreckenberg, M.: ‘A cellular automaton model for freeway traffic’, J. Phys. I, 1992, 2, (12), pp. 22212229.
    14. 14)
      • 20. Felzenszwalb, P., McAllester, D., Ramanan, D.: ‘A discriminatively trained, multiscale, deformable part model’. 2008 IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008, vol. 1–12.
    15. 15)
      • 36. Li, S., Wang, B., Zheng, Z.H., et al: ‘Multi-view vehicle detection in traffic surveillance combining HOG-HCT and deformarle part models’. 2012 Int. Conf. Wavelet Analysis and Pattern Recognition (ICWAPR), 2012.
    16. 16)
      • 33. Cho, H., Rybski, P.E., Zhang, W.: ‘Vision-based bicycle detection and tracking using a deformable part model and an EKF algorithm’. 2010 13th Int. IEEE Conf. Intelligent Transportation Systems (ITSC), Funchal, Portugal, 2010.
    17. 17)
      • 4. O'Connor, A., O'Brien, E.J.: ‘Traffic load modelling and factors influencing the accuracy of predicted extremes’, Can. J. Civ. Eng., 2005, 32, (1), pp. 270278.
    18. 18)
      • 40. Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: ‘A survey of video processing techniques for traffic applications’, Image Vis. Comput., 2003, 21, (4), pp. 359381.
    19. 19)
      • 31. Santos, A.M., de Carvalho, A.O., Silva, A.C., et al: ‘Automatic detection of small lung nodules in 3D Ct data using Gaussian mixture models, Tsallis entropy and SVM’, Eng. Appl. Artif. Intell., 2014, 36, pp. 2739.
    20. 20)
      • 9. Chen, S.R., Wu, J.: ‘Modeling stochastic live load for long-span bridge based on microscopic traffic flow simulation’, Comput. Struct., 2011, 89, (9–10), pp. 813824.
    21. 21)
      • 22. Ballard, D.H.: ‘Generalizing the Hough transform to detect arbitrary shapes’, Pattern Recognit., 1981, 13, (2), pp. 111122.
    22. 22)
      • 21. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al: ‘Object detection with discriminatively trained part-based models’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 16271645.
    23. 23)
      • 35. Leon, L.C., Hirata, R.Jr: ‘Vehicle detection using mixture of deformable parts models: static and dynamic camera’. 2012 25th SIBGRAPI Conf. Graphics, Patterns and Images (SIBGRAPI), 2012.
    24. 24)
      • 38. Radford, C., Houghton, D.: ‘Vehicle detection in open-world scenes using a Hough transform technique’. Third Int. Conf. Image Processing and its Applications, Warwick, UK, 1989.
    25. 25)
      • 12. Caprani, C.C., Lipari, A., O'Brien, E.J.: ‘Load effect of multi-lane traffic simulations on long-span bridges’. IABMAS 2012: Sixth Int. Conf. Bridge Maintenance, Safety, Management, Resilience and Sustainability, Stresa, Lake Maggiore, Italy, 8–12 July 2012.
    26. 26)
      • 15. Obrien, E., Lipari, A., Caprani, C.: ‘Estimation of density and gaps in congested traffic’. Proc. Irish Transportation Research Network, Cork, Ireland, 2011.
    27. 27)
      • 32. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. 2005 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005, vol. 1, pp. 886893.
    28. 28)
      • 2. Obrien, E.J., Hayrapetova, A., Walsh, C.: ‘The use of micro-simulation for congested traffic load modeling of medium- and long-span bridges’, Struct. Infrastruct. Eng., 2012, 8, (3), pp. 269276.
    29. 29)
      • 42. Theia technologies: http://www.theiatech.com.
    30. 30)
      • 26. Lewis, J.P.: ‘Fast normalized cross-correlation’. Vision Interface, 1995.
    31. 31)
      • 6. Kesting, A., Treiber, M.: ‘How reaction time, update time, and adaptation time influence the stability of traffic flow’, Comput.-Aided Civ. Infrastruct. Eng., 2008, 23, (2), pp. 125137.
    32. 32)
      • 28. Hisham, M.B., Yaakob, S.N., Raof, R.A.A., et al: ‘Template matching using sum of squared difference and normalized cross correlation’. 2015 IEEE Student Conf. Research and Development (SCOReD), Kuala Lumpur, Malaysia, 2015, pp. 100104.
    33. 33)
      • 25. Fung, Y.F., Lee, H., Ercan, M.F.: ‘Image processing application in toll collection’, Recent Adv. Eng. Comput. Sci. 2007, 2006, 62, pp. 8590.
    34. 34)
      • 23. Gonzalez, R., Woods, R., Eddins, S.: ‘Digital image processing using MATLAB’ (Gatesmark Publishing, 2009).
    35. 35)
      • 14. Carey, C., Obrien, E.J., Malekjafarian, A., et al: ‘Direct field measurement of the dynamic amplification in a bridge’, Mech. Syst. Signal Process., 2017, 85, pp. 601609.
    36. 36)
      • 34. Cho, H.G., Rybski, P.E., Bar-Hillel, A., et al: ‘Real-time pedestrian detection with deformable part models’. 2012 IEEE Intelligent Vehicles Symp. (IV), 2012, pp. 10351042.
    37. 37)
      • 24. Frenze, J.F.: ‘A video-based method for the detection of truck axles’. NIATT Report, 2002, No. 2.
    38. 38)
      • 37. Li, Y., Er, M.J., Shen, D.Y.: ‘A novel approach for vehicle detection using an and-or-graph-based multiscale model’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 22842289.
    39. 39)
      • 17. Ruan, Y.S., Chang, I.C., Yeh, H.Y.: ‘Vehicle detection based on wheel part detection’. 2017 IEEE Int. Conf. Consumer Electronics – Taiwan (ICCE-TW), 2017.
    40. 40)
      • 30. Jiang, F., Lin, X.: ‘A learning based approach for vehicle detection’. TENCON 2006 2006 IEEE Region 10 Conf., Hong Kong, China, 2006.
    41. 41)
      • 1. Caprani, C.C.: ‘Lifetime highway bridge traffic load effect from a combination of traffic states allowing for dynamic amplification’, J. Bridge Eng., 2013, 18, (9), pp. 901909.
    42. 42)
      • 16. Ojha, S., Sakhare, S.: ‘Image processing techniques for object tracking in video surveillance – a survey’. 2015 Int. Conf. Pervasive Computing (ICPC), India, 2015.
    43. 43)
      • 11. Caprani, C.: ‘Using microsimulation to estimate highway bridge traffic load’. Proc. Fifth Int. Conf. Bridge Maintenance, Safety and Management, Philadelphia, USA, 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5369
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5369
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading