Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hyperspectral band selection using crossover-based gravitational search algorithm

Band selection is an important data dimensionality reduction tool in hyperspectral images (HSIs). To identify the most informative subset band from the hundreds of highly corrected bands in HSIs, a novel hyperspectral band selection method using a crossover-based gravitational search algorithm (CGSA) is presented in this study. In this method, the discriminative capability of each band subset is evaluated by a combined optimisation criterion, which is constructed based on the overall classification accuracy and the size of the band subset. As the evolution of the criterion, the subset is updated using the V-shaped transfer function-based CGSA. Ultimately, the band subset with the best fitness value is selected. Experiments on two public hyperspectral datasets, i.e. the Indian Pines dataset and the Pavia University dataset, have been conducted to test the performance of the proposed method. Comparing experimental results against the basic GSA and the PSOGSA (hybrid PSO and GSA) revealed that all of the three GSA variants can considerably reduce the band dimensionality of HSIs without damaging their classification accuracy. Moreover, the CGSA shows superiority on both the effectiveness and efficiency compared to the other two GSA variants.

References

    1. 1)
      • 29. Wang, M., Wan, Y., Ye, Z., et al: ‘A band selection method for airborne hyperspectral image based on chaotic binary coded gravitational search algorithm’, Neurocomputing, 2018, 273, pp. 5767.
    2. 2)
      • 23. Razavi, S.F., Sajedi, H.: ‘Cognitive discrete gravitational search algorithm for solving 0-1 knapsack problem’, J. Intell. Fuzzy Syst., 2015, 29, (5), pp. 22472258.
    3. 3)
      • 5. Zabalza, J., Ren, J., Zheng, J., et al: ‘Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging’, Neurocomputing, 2016, 214, (C), p. 1062.
    4. 4)
      • 16. Jiang, S., Wang, Y., Ji, Z.: ‘Convergence analysis and performance of an improved gravitational search algorithm’, Appl. Soft Comput., 2014, 24, pp. 363384.
    5. 5)
      • 2. Hughes, G.: ‘On the mean accuracy of statistical pattern recognizers’, IEEE Trans. Inform. Theory, 1968, 14, (1), pp. 5563.
    6. 6)
      • 14. Firpi, H.A., Goodman, E.: ‘Swarmed feature selection’. Proc. Int. Conf. Information Theory, Washington DC, USA, October 2004, pp. 112118.
    7. 7)
      • 24. Sun, G., Zhang, A., Yao, Y., et al: ‘A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding’, Appl. Soft Comput., 2016, 46, pp. 703730.
    8. 8)
      • 13. Vafaie, H., De Jong, K.: ‘Genetic algorithms as a tool for feature selection in machine learning’. Proc. Fourth Int. Conf. Tools with Artificial Intelligence, Arlington, VA, USA, November 1992, pp. 200203.
    9. 9)
      • 26. Papa, J.P., Pagnin, A., Schellini, S.A., et al: ‘Feature selection through gravitational search algorithm’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Prague, Czech Republic, May 2011, pp. 20522055.
    10. 10)
      • 9. Wang, J., Chang, C.I.: ‘Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis’, IEEE Trans. Geosci. Remote, 2006, 44, (6), pp. 15861600.
    11. 11)
      • 19. Kumar, J.V., Kumar, D.M.V., Edukondalu, K.: ‘Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market’, Appl. Soft Comput., 2013, 13, (5), pp. 24452455.
    12. 12)
      • 8. Green, A.A, Berman, M., Switzer, P., et al: ‘A transformation for ordering multispectral data in terms of image quality with implications for noise removal’, IEEE Trans. Geosci. Remote, 1988, 26, (1), pp. 6574.
    13. 13)
      • 17. Sun, G., Ma, P., Ren, J., et al: ‘A stability constrained adaptive alpha for gravitational search algorithm’, Knowl.-Based Syst., 2018, 139, pp. 200213.
    14. 14)
      • 34. HSIs image datasets’, Available at http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes, accessed March 2018.
    15. 15)
      • 18. Zhang, A., Sun, G., Ren, J., et al: ‘A dynamic neighborhood learning-based gravitational search algorithm’, IEEE Trans. Cybern., 2018, 48, (1), pp. 436447.
    16. 16)
      • 11. Nakamura, R.Y.M., Fonseca, L.M.G., Santos, J.A.D., et al: ‘Nature-inspired framework for hyperspectral band selection’, IEEE Trans. Geosci. Remote, 2014, 52, (4), pp. 21262137.
    17. 17)
      • 33. Mirjalili, S., Lewis, A.: ‘S-shaped versus V-shaped transfer functions for binary particle swarm optimization’, Swarm Evol. Comput., 2013, 9, pp. 114.
    18. 18)
      • 7. Keshava, N., Mustard, J.F.: ‘Spectral unmixing’, IEEE Signal Proc. Mag., 2002, 19, (1), pp. 4457.
    19. 19)
      • 31. Yin, B., Guo, Z., Liang, Z., et al: ‘Improved gravitational search algorithm with crossover’, Comput. Electr. Eng., 66, 2018, pp. 505516.
    20. 20)
      • 6. Ren, J., Zabalza, J., Marshall, S., et al: ‘Effective feature extraction and data reduction with hyperspectral imaging in remote sensing’, IEEE Signal Proc. Mag., 2014, 31, (4), pp. 149154.
    21. 21)
      • 12. Keshava, N.: ‘Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries’, IEEE Trans. Geosci. Remote, 2004, 42, (7), pp. 15521565.
    22. 22)
      • 28. Kumar, V., Chhabra, J.K., Kumar, D.: ‘Automatic unsupervised feature selection using gravitational search algorithm’, IETE J. Res., 2015, 61, (1), pp. 2231.
    23. 23)
      • 30. Mirjalili, S., Lewis, A.: ‘Adaptive gbest-guided gravitational search algorithm’, Neural Comput. Appl., 2014, 25, (7–8), pp. 15691584.
    24. 24)
      • 22. Kumar, V., Chhabra, J.K., Kumar, D.: ‘Automatic cluster evolution using gravitational search algorithm and its application on image segmentation’, Eng. Appl. Artif. Intell., 2014, 29, (3), pp. 93103.
    25. 25)
      • 15. Al-Ani, A.: ‘Feature subset selection using ant colony optimization’, Int. J. Comput. Int., 2005, 2, (1), pp. 5358.
    26. 26)
      • 27. Behjat, A.R., Mustapha, A., Nezamabadi-Pour, H., et al: ‘Feature subset selection using binary gravitational search algorithm for intrusion detection system’. Proc. Asian Conf. Intelligent Information and Database Systems, Kuala Lumpur, Malaysia, March 2013, pp. 377386.
    27. 27)
      • 32. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: ‘BGSA: binary gravitational search agorithm’, Nat. Comput., 2010, 9, (3), pp. 727745.
    28. 28)
      • 20. Mirjalili, S.A., Hashim, S.Z.M., Sardroudi, H.M.: ‘Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm’, Appl. Math. Comput., 2012, 218, (22), pp. 1112511137.
    29. 29)
      • 4. Zhang, A.Z., Sun, G.Y., Wang, Z.J.: ‘Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm’. Proc. Ninth Int. Conf. Multispectral Image Processing and Pattern Recognition, Enshi, China, November 2015, pp. 981403-1981403-6.
    30. 30)
      • 3. Plaza, A., Martinez, P., Plaza, J., et al: ‘Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations’, IEEE Trans. Geosci. Remote, 2005, 43, (3), pp. 466479.
    31. 31)
      • 10. Bruce, L.M., Koger, C.H., Li, J.: ‘Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction’, IEEE Trans. Geosci. Remote, 2002, 40, (10), pp. 23312338.
    32. 32)
      • 21. Zhang, N., Li, C., Li, R., et al: ‘A mixed-strategy based gravitational search algorithm for parameter identification of hydraulic turbine governing system’, Knowl. Based Syst., 2016, 109, pp. 218237.
    33. 33)
      • 1. Su, H., Du, Q., Chen, G., et al: ‘Optimized hyperspectral band selection using particle swarm optimizatio’, IEEE J. Sel. Top. Appl., 2014, 7, (6), pp. 26592670.
    34. 34)
      • 25. Rashedi, E., Nezamabadi-Pour, H.: ‘Feature subset selection using improved binary gravitational search algorithm’, J. Intell. Fuzzy Syst., 2014, 26, (3), pp. 12111221.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5362
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5362
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address