http://iet.metastore.ingenta.com
1887

Automatic segmentation of MR depicted carotid arterial boundary based on local priors and constrained global optimisation

Automatic segmentation of MR depicted carotid arterial boundary based on local priors and constrained global optimisation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Segmentation of lumen (LB) and outer wall boundaries (OB) of carotid artery in magnetic resonance (MR) images is essential for carotid atherosclerotic disease diagnosis. However, the limited image signal-to-noise ratio, flow artefact, and varied lumen and outer wall become significant obstacles for automatic segmentation. A fully automatic framework is proposed for LB and OB segmentation in MR images. First, the lumen is identified by the support vector machine using a special strategy and LB is segmented by the geodesic star-shape-constrained graph cut. Then a novel global optimisation is developed to segment OB based on the graph cut, which consists of shape priors and appearance priors. The shape priors are learned from labelled shapes on LB and OB, while the appearance priors are modelled by Gaussian mixture models. A novel shape constraint is also designed as the constraint term. To evaluate author's method, extensive experiments are carried out from 160 MR images belonging to 16 patients. Experimental results demonstrate that the proposed method can yield high accuracy with fully automatic segmentation. Moreover, the advantages of the proposed method have been shown in terms of high flexibility and accuracy without user interactions in comparison with other methods.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5330
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5330
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address