access icon free Efficient image classification technique for weather degraded fruit images

Fruit image classification is an ill-posed problem. Many machine learning techniques have been developed until now to improve the classification problem of fruit images. However, the performance of these techniques depends upon the quality of acquired fruit images. Thus, the performance of competitive fruit classification techniques reduces for images captured under poor environmental conditions, such as haze, fog, smog etc. To overcome this issue, type-II fuzzy-based fruit image improvement approach is employed to improve the visibility of weather degraded fruit images. After that, fruit images will be classified using an integrated classification model. The integrated model combines two well-known models (i.e. CNN and RNN). CNN is utilised to evaluate the discriminative features of fruit images. RNN is utilised to asses sequential labels. Extensive analysis shows that the proposed integrated classification model outperforms competitive fruit image classification techniques in terms of accuracy and coefficient of correlation.

Inspec keywords: learning (artificial intelligence); image classification; fuzzy set theory; pattern classification; feature extraction; agricultural products

Other keywords: efficient image classification technique; acquired fruit images; competitive fruit image classification techniques; competitive fruit classification techniques; type-II fuzzy-based fruit image improvement approach; integrated classification model

Subjects: Agriculture; Computer vision and image processing techniques; Optical, image and video signal processing; Combinatorial mathematics; Other topics in statistics; Products and commodities; Knowledge engineering techniques

References

    1. 1)
      • 19. Tang, Y., Fang, J.-A.: ‘Synchronization of takagi-sugeno fuzzy stochastic delayed complex networks with hybrid coupling’, Mod. Phys. Lett. B, 2009, 23, (20–21), pp. 24292447.
    2. 2)
      • 20. Andrecut, M.: ‘A statistical-fuzzy perceptron’, Mod. Phys. Lett. B, 1999, 13, (1), pp. 3341.
    3. 3)
      • 1. Tian, Z., Jia, L.-M., Dong, H.-H., et al: ‘Fuzzy peak hour for urban road traffic network’, Mod. Phys. Lett. B, 2015, 29, (15), p. 1550074.
    4. 4)
      • 17. Fang, C., Mu, D., Deng, Z., et al: ‘Uncovering the fuzzy community structure accurately based on steepest descent projection’, Mod. Phys. Lett. B, 2017, 31, (27), p. 1750249.
    5. 5)
      • 21. Shi, J.P.: ‘Prediction study on the degeneration of lithium-ion battery based on fuzzy inference system’, Mod. Phys. Lett. B, 2017, 31, (19–21), p. 1740083.
    6. 6)
      • 14. Chaudhry, H., Rahim, M.S.M., Khalid, A.: ‘Multi scale entropy based adaptive fuzzy contrast image enhancement for crowd images’, Multimed. Tools Appl., 2018, 77, pp. 1548515504.
    7. 7)
      • 23. Singh, D., Kumar, V.: ‘Modified gain intervention filter based dehazing technique’, J. Mod. Opt., 2017, 64, (20), pp. 21652178.
    8. 8)
      • 6. Jiang, G., Wong, C., Lin, S., et al: ‘Image contrast enhancement with brightness preservation using an optimal gamma correction and weighted sum approach’, J. Mod. Opt., 2015, 62, (7), pp. 536547.
    9. 9)
      • 8. Singh, H., Khehra, B.S.: ‘Visibility enhancement of color images using type-II fuzzy membership function’, Mod. Phys. Lett. B, 2018, 32, (11), p. 1850130.
    10. 10)
      • 13. Deng, H., Sun, X., Liu, M., et al: ‘Image enhancement based on intuitionistic fuzzy sets theory’, IET Image Process., 2016, 10, (10), pp. 701709.
    11. 11)
      • 22. Guo, Y., Liu, Y., Bakker, E.M., et al: ‘CNN-RNN: a large-scale hierarchical image classification framework’, Multimedia Tools Appl., 2018, 77, (8), pp. 1025110271.
    12. 12)
      • 26. Gill, H.S., Khehra, B.S., Singh, A., et al: ‘Teaching-learning-based optimization algorithm to minimize cross entropy for selecting multilevel threshold values’, Egypt. Inf. J., 2019, 20, (1), pp. 1125.
    13. 13)
      • 10. Ensafi, P., Tizhoosh, H.R.: ‘Type-2 fuzzy image enhancement’. Int. Conf. Image Analysis and Recognition, Montreal, Canada, 2005, pp. 159166.
    14. 14)
      • 5. Celik, T., Li, H.-C.: ‘Residual spatial entropy-based image contrast enhancement and gradient-based relative contrast measurement’, J. Mod. Opt., 2016, 63, (16), pp. 16001617.
    15. 15)
      • 11. Kar, N.B., Babu, K.S., Sangaiah, A.K., et al: ‘Face expression recognition system based on ripplet transform type II and least square SVM’, Multimed. Tools Appl., 2019, 78, pp. 47894812.
    16. 16)
      • 3. Niu, Y., Lin, W., Ke, X., et al: ‘Fitting-based optimisation for image visual salient object detection’, IET Comput. Vis., 2017, 11, (2), pp. 161172.
    17. 17)
      • 12. Khehra, B.S., Pharwaha, A.P.S., Kaushal, M.: ‘Fuzzy 2-partition entropy threshold selection based on big bang–big crunch optimization algorithm’, Egypt. Inf. J., 2015, 16, (1), pp. 133150.
    18. 18)
      • 18. Yoo, W.J., Ji, D.H., Won, S.C.: ‘Adaptive fuzzy synchronization of two different chaotic systems with stochastic unknown parameters’, Mod. Phys. Lett. B, 2010, 24, (10), pp. 979994.
    19. 19)
      • 15. Dang, C., Gao, J., Wang, Z., et al: ‘Multi-step radiographic image enhancement conforming to weld defect segmentation’, IET Image Process., 2015, 9, (11), pp. 943950.
    20. 20)
      • 7. Singh, K., Vishwakarma, D.K., Walia, G.S., et al: ‘Contrast enhancement via texture region based histogram equalization’, J. Mod. Opt., 2016, 63, (15), pp. 14441450.
    21. 21)
      • 16. Al-Naji, A., Lee, S.H., Chahl, J.: ‘Quality index evaluation of videos based on fuzzy interface system’, IET Image Process., 2017, 11, (5), pp. 292300.
    22. 22)
      • 9. Li, C., Yang, Y., Xiao, L., et al: ‘A novel image enhancement method using fuzzy sure entropy’, Neurocomputing, 2016, 215, pp. 196211.
    23. 23)
      • 24. Dong, C., Loy, C.C., He, K., et al: ‘Image super-resolution using deep convolutional networks’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (2), pp. 295307.
    24. 24)
      • 4. Provenzi, E.: ‘Boosting the stability of wavelet-based contrast enhancement of color images through gamma transformations’, J. Mod. Opt., 2013, 60, (14), pp. 11451150.
    25. 25)
      • 25. Turkoglu, M., Hanbay, D., Sengur, A.: ‘Multi-model LSTM-based convolutional neural networks for detection of apple diseases and pests’, J. Ambient Intell. Hum. Comput., 2019, 10, (11), pp. 111.
    26. 26)
      • 2. Rasti, P., Nasrollahi, K., Orlova, O., et al: ‘A new low-complexity patch-based image super-resolution’, IET Comput. Vis., 2017, 11, (7), pp. 567576.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5310
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5310
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading