access icon free Computer aided diagnosis of glaucoma using discrete and empirical wavelet transform from fundus images

Glaucoma is a class of eye disorder; it causes progressive deterioration of optic nerve fibres. Discrete wavelet transforms (DWTs) and empirical wavelet transforms (EWTs) are widely used methods in the literature for feature extraction using image decomposition. However, to increase the accuracy for measuring features of images a hybrid and concatenation approach has been presented in the proposed research work. DWT decomposes images into approximate and detail coefficients and EWT decomposes images into its sub band images. The concatenation approach employs the combination of all features obtained using DWT and EWT and their combination. Extracted features from each of DWT, EWT, DWTEWT and EWTDWT are concatenated. Concatenated features are normalised, ranked and fed to singular value decomposition to find robust features. Fourteen robust features are used by support vector machine classifier. The obtained accuracy, sensitivity and specificity are 83.57, 86.40 and 80.80%, respectively, for tenfold cross validation which outperforms the existing methods of glaucoma detection.

Inspec keywords: image classification; medical image processing; biomedical optical imaging; discrete wavelet transforms; support vector machines; eye; diseases; wavelet transforms; feature extraction; singular value decomposition

Other keywords: extracted features; fundus images; band images; image decomposition; concatenated features; optic nerve fibres; glaucoma detection; empirical wavelet transforms; eye disorder; singular value decomposition; feature extraction; EWT; discrete wavelet; hybrid concatenation approach; DWT; fourteen robust features; progressive deterioration

Subjects: Combinatorial mathematics; Integral transforms; Optical, image and video signal processing; Knowledge engineering techniques; Other topics in statistics; Computer vision and image processing techniques; Integral transforms; Patient diagnostic methods and instrumentation; Biology and medical computing; Biomedical measurement and imaging

References

    1. 1)
      • 38. Khalil, T., Akram, M.U., Khalid, S., et al: ‘Improved automated detection of glaucoma from fundus image using hybrid structural and textural features’, IET Image Process., 2017, 11, (9), pp. 693700.
    2. 2)
      • 16. Raja, C., Gangatharan, N.: ‘Glaucoma detection in fundal retinal images using trispectrum and complex wavelet based features’, Eur. J. Sci. Res., 2013, 97, (1), pp. 159171.
    3. 3)
      • 5. Kavitha, S., Zebardast, N., Palaniswamy, K., et al: ‘Family history is a strong risk factor for prevalent angle closure in a south Indian population’, Ophthalmology, 2014, 121, (11), pp. 20912097.
    4. 4)
      • 37. Kirar, B.S., Agrawal, D.K.: ‘Empirical wavelet transform based pre-processing and entropy feature extraction from glaucomatous digital fundus images’. Int. Conf. Recent Innovations in Signal processing and Embedded Systems (RISE), India, October 2017, pp. 315319, DOI: 10.1109/RISE.2017.8378173.
    5. 5)
      • 31. Kononenko, I.: ‘Estimating attributes: analysis and extensions of RELIEF’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 1994), pp. 171182.
    6. 6)
      • 26. Rim-One-Medical Image Analysis Group’, http://medimrg.webs.ull.es/, accessed 20 April 2017.
    7. 7)
      • 32. Stewart, G.W.: ‘On the early history of the singular value decomposition’, SIAM Rev., 1993, 35, (4), pp. 551566.
    8. 8)
      • 52. McCallum, A., Nigam, K.: ‘A comparison of event models for naive Bayes text classification’. Proc. of the AAAI-98 workshop on learning for text categorization, 1998, pp. 4148.
    9. 9)
      • 54. Le Cessie, S., Van Houwelingen, J.: ‘Ridge estimators in logistic regression’, J. R. Stat. Soc. Series C (Appl. Stat.), 1992, 41, (1), pp. 191201, doi:10.2307/2347628.
    10. 10)
      • 28. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson, UP, India, 2014, 3rd edn.).
    11. 11)
      • 25. Maheshwari, S., Pachori, R.B., Acharya, U.R.: ‘Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images’, IEEE J. Biomed. Health Inf., 2017, 21, (3), pp. 803813.
    12. 12)
      • 23. Kavyashree, M., Rao, P.V.: ‘A novel approach on automatic detection of optic disc and optic cup segmentation’, ITSI Trans. Electr. Electron. Eng. (ITSI-TEEE), 2016, 4, (2), pp. 23208945.
    13. 13)
      • 22. Ghosh, A., Sarkar, A., Ashour, A.S., et al: ‘Grid color moment features in glaucoma classification’, Int. J. Adv. Comput. Sci. Appl. (IJACSA), 2015, 6, (9), pp. 99107, http://dx.doi.org/10.14569/IJACSA.2015.060913.
    14. 14)
      • 11. Hermann, M.M., David, F., Garway-Heath, D.F., et al: ‘Interobserver variability in confocal optic nerve analysis (HRT)’, Int. Ophthalmol., 2005, 26, (4), pp. 51435149.
    15. 15)
      • 29. Gilles, J.: ‘Empirical wavelet transform’, IEEE Trans. Signal Process., 2013, 61, (16), pp. 39994010.
    16. 16)
      • 15. Nyúl, L.G.: ‘Retinal image analysis for automated glaucoma risk evaluation’. Proc. SPIE 7497, MIPPR 2009: Medical Imaging, Parallel Processing of Images, and Optimization Techniques, October 2009, 7497, pp. 74971C-19, doi: 10.1117/12.851179.
    17. 17)
      • 20. Raja, C., Gangatharan, N.: ‘Optimal hyper analytic wavelet transform for glaucoma detection in fundal retinal images. J. Electr. Eng. Technol., 2015, 10, (4), pp. 18991909.
    18. 18)
      • 46. Modified Haussdorf fractal dimension’, https://in.mathworks.com/matlabcentral/fileexchange/50790-modified-haussdorf-fractal-dimension, accessed 7 February 2018.
    19. 19)
      • 48. Xia, X, Yuan, F., Chen, D: ‘Fusing histograms of oriented gradient and weber local descriptor for face recognition’, 2018, CVI-2018–5177.
    20. 20)
      • 9. Dua, S., Acharya, U.R., Chowriappa, P., et al: ‘Wavelet-based energy features for glaucomatous image classification’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (1), pp. 8087.
    21. 21)
      • 3. Resnikoff, S., Pascolini, D., Etya'ale, D., et al: ‘Global data on visual impairment in the year 2002’, Bull. W. H. O., 2004, 82, (11), pp. 844851.
    22. 22)
      • 13. Kolar, R., Jan, J.: ‘Detection of glaucomatous eye via color fundus images using fractal dimensions’, Radio Eng., 2008, 17, (3), pp. 109114.
    23. 23)
      • 17. Kim, P.Y., Iftekharuddin, K.M., Davey, P.G., et al: ‘Novel fractal feature-based multiclass glaucoma detection and progression prediction’, IEEE. J. Biomed. Health Inf., 2013, 17, (2), pp. 269276.
    24. 24)
      • 4. Types of Glaucoma-Glaucoma Research Foundation’, https://www.glaucoma.org/glaucoma/types-of-glaucoma.php, accessed 27 November 2017.
    25. 25)
      • 35. Sharma, R., Pachori, R.B., Acharya, U.R.: ‘Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals’, Entropy, 2015, 17, (2), p. 669691.
    26. 26)
      • 7. Detecting Glaucoma-VisionAware’, http://www.visionaware.org/info/your-eye-condition/glaucoma/detecting-glaucoma/125, accessed 27 December 2017.
    27. 27)
      • 24. Acharya, U.R., Mookiah, M.R.K., Koh, J.E., et al: ‘Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index’, Comput. Biol. Med., 2016, 75, pp. 5462.
    28. 28)
      • 14. Townsend, K.A., Wollstein, G., Danks, D., et al: Heidelberg retina tomograph 3 machine learning classifiers for glaucoma detection. Br. J. Ophthalmol., 2008, 92, (6), pp. 814818.
    29. 29)
      • 34. Khandoker, A.H., Lai, D.T.H., Begg, R.K., et al: ‘Wavelet based feature extraction for support vector machines for screening balance impairments in the elderly’, IEEE Trans. Neural Syst. Rehabil. Eng., 2007, 15, (4), pp. 587597.
    30. 30)
      • 44. GLCM Features4’, https://in.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m--vectorized-version-of-glcm-features1-m-with-code-changes-, accessed 10 November 2017.
    31. 31)
      • 30. Gilles, J., Tran, G., Osher, S.: ‘2D empirical transforms. Wavelets, ridgelets, and curvelets revisited’, SIAM J. Imaging Sci., 2014, 7, (1), pp. 157186.
    32. 32)
      • 53. Landwehr, N., Hall, M., Frank, E.: ‘Logistic model tree’, Mach. Learn., 2005, 59, (1-2), pp. 161205, https://doi.org/10.1007/s10994-005-0466-3.
    33. 33)
      • 39. Saki, F., Tahmasbi, A., Soltanian-Zadeh, H.S, et al: ‘Opposite weight learning rules with application in breast cancer diagnosis’, Comput. Biol. Med., 2013, 43, (1), pp. 3241.
    34. 34)
      • 21. Gajbhiye, G.O., Kamthane, A.N.: ‘Automatic classification of glaucomatous images using wavelet and moment feature’. Annual IEEE India Conf. (INDICON), New Delhi, 2015, pp. 15.
    35. 35)
      • 12. Abràmoff, M.D., Alward, W.L., Greenlee, E.C., et al: ‘Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features’, Invest Ophthalmol Vis Sci., 2007, 48, (4), pp. 16651673.
    36. 36)
      • 49. Yuan, F, Shi, J., Xia, X, et al: ‘Sub oriented histograms of local binary patterns for smoke detection and texture classification’, KSII Trans. Internet Inf. Syst., 2016, 10, (4), pp. 18071823.
    37. 37)
      • 1. Bock, R., Meier, J., Nyúl, L.G., et al: ‘Glaucoma risk index: automated glaucoma detection from color fundus images’, Med. Image Anal., 2010, 14, pp. 471481.
    38. 38)
      • 47. Gray level difference method’, https://in.mathworks.com/matlabcentral/fileexchange/25057-texture-feature-extraction-gldm, accessed 11 February 2018.
    39. 39)
      • 42. Zhang, Y., Lenan, W.: ‘An MR brain images classifier via principal component analysis and kernel support vector machine’, Prog. Electromagn. Res., 2012, 130, pp. 369388.
    40. 40)
      • 19. Raja, C., Gangatharan, N.: ‘Appropriate sub-band selection in wavelet packet decomposition for automated glaucoma diagnoses’, Int. J. Autom. Comput., 2015, 12, (4), pp. 393401, DOI: 10.1007/s11633–014–0858–6.
    41. 41)
      • 8. Song, X.X., Song, K., Chen, Y.: ‘A computer-based diagnosis system for early glaucoma screening’. Proc. 27th Annual IEEE Engineering in Medicine and Biology, 2005, pp. 66086611.
    42. 42)
      • 40. Hu, M.K.: ‘Visual pattern recognition by moment invariants’, IRE Trans. Inf. Theory, 1962, 8, (2), pp. 179187.
    43. 43)
      • 36. Zuiderveld, K.: ‘Contrast limited adaptive histograph equalization’, in ‘Graphic gems IV’ (Academic Press Professional, San Diego, 1994), pp. 474485.
    44. 44)
      • 43. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, SMC-3, pp. 610621.
    45. 45)
      • 6. Greaney, M.J., Hoffman, D.C., Garway-Heath, D.F., et al: ‘Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma’, Invest. Ophthalmol. Vis. Sci., 2002, 43, (1), pp. 140145.
    46. 46)
      • 45. Gray level run length matrix (GLRLM)’, https://in.mathworks.com/matlabcentral/fileexchange/52640-gray-level-run-length-image-statistics, accessed 27 February 2018.
    47. 47)
      • 27. Maheshwari, S., Pachori, R.B., Kanhangad, V., et al: ‘Iterative variational mode decomposition based automated detection of glaucoma using fundus images’, Comput. Biol. Med., 2017, 88, pp. 142149.
    48. 48)
      • 51. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, (1), pp. 532.
    49. 49)
      • 33. Suykens, J.A.K., Vandewalle, J.: ‘Least squares support vector machine classifiers’, Neural Process. Lett., 1999, 9, (3), pp. 293300.
    50. 50)
      • 41. Chip histogram’, https://in.mathworks.com/matlabcentral/fileexchange/17537-histogram-features-of-a-gray-level-image?focused=5094859&tab=function, accessed 10 April 2017.
    51. 51)
      • 10. Lim, T.C., Chattopadhyay, S., Acharya, U.R.: ‘A survey and comparative study on the instruments for glaucoma detection’, Med. Eng. Phys., 2012, 34, (2), pp. 129139.
    52. 52)
      • 18. Yadav, D., Sarathi, M.P., Dutta, M.K.: ‘Classification of glaucoma based on texture features using neural networks’. IEEE 7th Int. Conf. on Contemporary Computing, 2014.
    53. 53)
      • 2. Tham, Y.C., Li, X., Wong, H.A., et al: ‘Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis’, Ophthalmology, 2014, 121, (11), pp. 20812090.
    54. 54)
      • 50. Yin, Z., Wan, B., Yuan, F, et al: ‘A deep normalization and convolutional neural network for image smoke detection’, IEEE Access, 2017, 5, pp. 1842918438.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5297
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5297
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading