Graph clustering and variational image segmentation for automated firearm detection in X-ray images

Graph clustering and variational image segmentation for automated firearm detection in X-ray images

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Millions of parcels and pieces of luggage are scanned daily for threat detection at border control or high-security buildings. Currently, the process is manually operated by security agents and it is slow and time-consuming. The automation of this process will lift the burden from the security agents and will allow larger volumes of items to be scanned. The authors consider the problem of automatic threat detection, in particular firearms, in X-rays. To achieve this goal, they propose a hybrid algorithm that combines two well-established image segmentation algorithms into a two-step clustering method. The first step is a semi-supervised spectral clustering algorithm at the image level, which classifies whole images into benign or containing a threat. The images classified as threatening from the first step proceed to the second stage, where a variational image segmentation algorithm performs clustering at the pixel level to locate the threat if it exists. The hybrid algorithm is designed to scale-up the processing of hundreds of images, in comparison to the academic literature where only a handful images are used for demonstration. Numerical experiments establish that the combination of two different algorithms produces better results than using individual algorithms.


    1. 1)
      • 1. Chapelle, O., Scholkopf, B., Zien, A.: ‘Semi-Supervised Learning’ (MIT Press, Cambridge, Massachusetts, 2006).
    2. 2)
      • 2. Chen, W., Feng, G.: ‘Spectral clustering: a semi-supervised approach’, Neurocomputing, 2012, 77, (1), pp. 229242.
    3. 3)
      • 3. Bertozzi, A.L., Flenner, A.: ‘Diffuse interface models on graphs for classification of high dimensional data’, Multiscale. Model. Simul., 2012, 10, (3), pp. 10901118.
    4. 4)
      • 4. Bishop, C.: ‘Pattern recognition and machine learning’ (Springer, New York, 2006).
    5. 5)
      • 5. Nixon, M., Aguado, A.S.: ‘Feature extraction and image processing’ (Elsevier Ltd, Oxford, 2008).
    6. 6)
      • 6. Feng, D.: ‘Segmentation of bone structures in X-ray images’. PhD thesis, Thesis proposal to the School of Computing National University of Singapore, supervisor Dr. Leow Wee Kheng, 2006.
    7. 7)
      • 7. Wu, J., Mahfouz, M.R.: ‘Robust x-ray image segmentation by spectral clustering and active shape model’, J. Med. Imag., 2016, 3, (3), p. 034005.
    8. 8)
      • 8. Stolojescu-Crisan, C., Stefan, H.: ‘A comparison of x-ray image segmentation techniques’, Adv. Electr. Comput. Eng., 2013, 3, pp. 8592.
    9. 9)
      • 9. Dougherty, G.: ‘Medical image processing: techniques and applications’ (Springer Science & Business Media, New York, 2011).
    10. 10)
      • 10. Singh, M., Singh, S.: ‘Image segmentation optimisation for x-ray images of airline luggage’. Proc. of the 2004 IEEE Int. Conf. on Computational Intelligence for Homeland Security and Personal Safety, 2004 (CIHSPS 2004), 2004, pp. 1017.
    11. 11)
      • 11. Nercessian, S., Panetta, K., Agaian, S.: ‘Automatic detection of potential threat objects in x-ray luggage scan images’. 2008 IEEE Conf. on Technologies for Homeland Security, 2008, pp. 504509.
    12. 12)
      • 12. Jaccard, N., Rogers, T.W., Morton, E.J., et al: ‘Using deep learning on x-ray images to detect threats’. Proc. Cranfield Defence and Security Doctoral Symp., 2015, pp. 112.
    13. 13)
      • 13. Grega, M., Matiolanski, A., Guzik, P., et al: ‘Automated detection of firearms and knives in a cctv image’, Sensors, 2016, 16, (1), p. 47.
    14. 14)
      • 14. Olmos, R., Tabik, S., Herrera, F.: ‘Automatic handgun detection alarm in videos using deep learning’, Neurocomputing, 2018, 275, pp. 6672.
    15. 15)
      • 15. Shi, J., Malik, J.: ‘Normalized cuts and image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 888905.
    16. 16)
      • 16. Garcia-Cardona, C., Merkurjev, E., Bertozzi, A.L., et al: ‘Multiclass data segmentation using diffuse interface methods on graphs’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (8), pp. 16001613.
    17. 17)
      • 17. Calatroni, L., Gennip, Y.V., Schönlieb, C.-B., et al: ‘Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images’, J. Math. Imaging Vis., 2016, 57, (2), pp. 269291.
    18. 18)
      • 18. Bertozzi, A.L., Luo, X., Stuart, A.M., et al: ‘Uncertainty quantification in the classification of high dimensional data’, arXiv preprint arXiv:1703.08816, 2017.
    19. 19)
      • 19. Varma, M., Zisserman, A.: ‘A statistical approach to texture classification from single images’, Int. J. Comput. Vis., 2005, 62, (1–2), pp. 6181.
    20. 20)
      • 20. De Weijer, J.V., Schmid, C.: ‘Coloring local feature extraction’. European Conf. on Computer Vision, 2006, pp. 334348.
    21. 21)
      • 21. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    22. 22)
      • 22. Zhong, C., Karamshuk, D., Sastry, N.: ‘Predicting pinterest: automating a distributed human computation’. Proc. of the 24th Int. Conf. on World Wide Web, 2015, pp. 14171426.
    23. 23)
      • 23. Innovate UK: ‘SBRI funding competition: automatic threat detection of firearms’, June 2016. Available at
    24. 24)
      • 24. Ulrike von Luxburg: ‘A tutorial on spectral clustering’, Stat. Comput., 2007, 17, (4), pp. 395416.
    25. 25)
      • 25. Agoston, M.K.: ‘Computer graphics and geometric modeling’, vol. 1 (Springer, Cupertino, 2005).
    26. 26)
      • 26. Hanbury, A.: ‘Constructing cylindrical coordinate colour spaces’, Pattern Recognit. Lett., 2008, 29, (4), pp. 494500.
    27. 27)
      • 27. vgg-webmasters on behalf of Visual Geometry Group: ‘Texture classification’, 2007.
    28. 28)
      • 28. Vedaldi, A., Fulkerson, B.: ‘VLFeat: an open and portable library of computer vision algorithms’, 2008.
    29. 29)
      • 29. Roth, V., Lange, T.: ‘Adaptive feature selection in image segmentation’. Joint Pattern Recognition Symp., 2004, pp. 917.
    30. 30)
      • 30. Belongie, S., Carson, C., Greenspan, H., et al: ‘Color-and texture-based image segmentation using em and its application to content-based image retrieval’. Sixth Int. Conf. on Computer Vision, 1998, 1998, pp. 675682.
    31. 31)
      • 31. Allili, M.S., Ziou, D.: ‘Object of interest segmentation and tracking by using feature selection and active contours’. IEEE Conf. on Computer Vision and Pattern Recognition, 2007 (CVPR'07), 2007, pp. 18.
    32. 32)
      • 32. Allili, M.S., Ziou, D., Bouguila, N., et al: ‘Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (10), pp. 13731377.

Related content

This is a required field
Please enter a valid email address