http://iet.metastore.ingenta.com
1887

Directional relative total variation for structure–texture decomposition

Directional relative total variation for structure–texture decomposition

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Structure–texture decomposition is one of the fundamental branches of computer vision and image processing. It is not only beneficial to image understanding but also to subsequent object recognition and tracking. However, diversity and complexity of textures impede structure extraction. In this study, a simple yet effective structure–texture decomposition method is proposed based on directional relative total variation. More concretely, the directionality of relative total variation is taken into account by using the directional gradient operator instead of partial derivatives both in x and y directions. In addition, in order to explore the directional information on different scales, the non-subsampled pyramid filter bank is employed to obtain the multi-scale properties. Experiments on a wide variety of images reveal the efficacy of the proposed method and show its superiority over several state-of-the-art methods. Besides, the applicability of the proposed method to several image processing tasks is also demonstrated, such as edge extraction, defect detection, and so on.

References

    1. 1)
      • 1. Durand, F., Dorsey, J.: ‘Fast bilateral filtering for the display of high-dynamic-range images’, ACM Trans. Graph., 2002, 21, (3), pp. 257266.
    2. 2)
      • 2. Perona, P., Malik, J.: ‘Scale-space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (7), pp. 629639.
    3. 3)
      • 3. Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. Proc. IEEE Int. Conf. on Computer Vision, Bombay, India, January 1998, pp. 839846.
    4. 4)
      • 4. He, K., Sun, J., Tang, X.: ‘Guided image filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (6), pp. 13971409.
    5. 5)
      • 5. Gastal, E., Oliveira, M.: ‘Domain transform for edge-aware image and video processing’, ACM Trans. Graph., 2011, 30, (4), pp. 6979.
    6. 6)
      • 6. Kopf, J., Cohen, M., Lischinski, D., et al: ‘Joint bilateral upsampling’, ACM Trans. Graph., 2007, 26, (3), pp. 96100.
    7. 7)
      • 7. Papari, G., Idowu, N., Varslot, T.: ‘Fast bilateral filtering for denoising large 3D images’, IEEE Trans. Image Process., 2017, 26, (1), pp. 251261.
    8. 8)
      • 8. Li, Z., Zheng, J., Zhu, Z., et al: ‘Weighted guided image filtering’, IEEE Trans. Image Process., 2015, 24, (1), pp. 120129.
    9. 9)
      • 9. Levent, K., Erdem, E., Erdem, A.: ‘Structure-preserving image smoothing via region covariances’, ACM Trans. Graph., 2013, 32, (6), pp. 111.
    10. 10)
      • 10. Zhang, Q., Shen, X., Xu, L., et al: ‘Rolling guidance filter’. Proc. IEEE European Conf. on Computer Vision, Zurich, Switzerland, September 2014, pp. 815830.
    11. 11)
      • 11. Aubry, M., Paris, S.: ‘Fast local Laplacian filters: theory and applications’, ACM Trans. Graph., 2014, 33, (5), pp. 167181.
    12. 12)
      • 12. He, L., Wang, Y.: ‘Image smoothing via truncated 0 gradient regularisation’, IET Image Process.., 2018, 12, (2), pp. 226234.
    13. 13)
      • 13. Vese, L., Osher, S.Y.: ‘Image denoising and decomposition with total variation minimization and oscillatory function’, J. Math. Imaging Vis., 2004, 20, pp. 718.
    14. 14)
      • 14. Yin, W., Goldfarb, D., Osher, S.: ‘The total variation regularized L1 model for multiscale decomposition’, Multiscale Model. Simul., 2007, 6, (1), pp. 190211.
    15. 15)
      • 15. Osher, S., Sole, A., Vese, L.: ‘Image decomposition, image restoration, and texture modeling using total variation minimization and the H−1 norm’. Proc. IEEE Int. Conf. on Image Processing, Barcelona, Spain, November 2003, pp. 689692.
    16. 16)
      • 16. Gilles, J., Meyer, Y.: ‘Properties of BV-G structures plus textures decomposition models, application to road detection in satellite images’, IEEE Trans. Image Process., 2010, 19, (11), pp. 27932800.
    17. 17)
      • 17. Aujol, J., Gilboa, G., Chan, T., et al: ‘Structure-texture image decomposition-modeling, algorithms, and parameter selection’, Int. J. Comput. Vis., 2006, 67, (1), pp. 111136.
    18. 18)
      • 18. Farbman, Z., Fattal, R., Lischinski, D., et al: ‘Edge-preserving decompositions for multi-scale tone and detail manipulation’, ACM Trans. Graph., 2008, 27, (3), pp. 6776.
    19. 19)
      • 19. Liu, W., Chen, X., Shen, C., et al: ‘Semi-global weighted least squares in image filtering’. Proc. IEEE Int. Conf. on Computer Vision, Venice, Italy, October 2017, pp. 58615869.
    20. 20)
      • 20. Xu, L., Lu, C., Xu, Y., et al: ‘Image smoothing via L0 gradient minimization’, ACM Trans. Graph., 2011, 30, (6), pp. 174185.
    21. 21)
      • 21. Xu, L., Yan, Q., Xia, Y., et al: ‘Structure extraction from texture via relative total variation’, ACM Trans. Graph., 2012, 31, (6), pp. 139148.
    22. 22)
      • 22. Wei, X., Yang, Q., Gong, Y.: ‘Joint contour filtering’, Int. J. Comput. Vis., 2018, 126, pp. 12451265.
    23. 23)
      • 23. Bi, S., Han, X., Yu, Y.: ‘An l1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition’, ACM Trans. Graph., 2015, 34, (4), pp. 7888.
    24. 24)
      • 24. Ham, B., Cho, M., Ponce, J.: ‘Robust guided image filtering using nonconvex potentials’, IEEE Trans. Pattern Anal. Mach. Intell., 2018, 40, (1), pp. 192207.
    25. 25)
      • 25. Ilker, B., Mustafa, E.: ‘Directional total variation’, IEEE Signal Process. Lett., 2012, 19, (12), pp. 781784.
    26. 26)
      • 26. Arthur, L., Da, C., Zhou, J., et al: ‘The nonsubsampled contourlet transform: theory, design, and applications’, IEEE Trans. Image Process., 2006, 15, (10), pp. 30893101.
    27. 27)
      • 27. He, N., Wang, J., Zhang, L.: ‘An improved fractional-order differentiation model for image denoising’, Signal Process.., 2015, 112, (C), pp. 180188.
    28. 28)
      • 28. Robert, B., Chen, G.: ‘A multipreconditioned conjugate gradient algorithm’, SIAM J. Matrix Anal. Appl., 2006, 27, (4), pp. 10561068.
    29. 29)
      • 29. Liu, Q., Xiong, B., Yang, D.: ‘A generalized relative total variation method for image smoothing’, Multimedia Tools Appl., 2016, 75, (13), pp. 79097930.
    30. 30)
      • 30. Lin, J., Luo, S., Li, Q., et al: ‘Real-time rail head surface defect detection: a geometrical approach’. IEEE Int. Symp. on Industrial Electronics, Seoul, South Korea, July 2009, pp. 769774.
    31. 31)
      • 31. Michael, K., Henry, Y., Yuan, X., et al: ‘Patterned fabric inspection and visualization by the method of image decomposition’, IEEE Trans. Autom. Sci. Eng., 2014, 11, (3), pp. 943947.
    32. 32)
      • 32. Lu, C., Xu, L., Jia, J.: ‘Combining sketch and tone for pencil drawing production’. Proc. Symp. on Non-Photorealistic Animation and Rendering, Aire-la-Ville, Switzerland, June 2012, pp. 6573.
    33. 33)
      • 33. Pérez, P., Gangnet, M., Blake, A.: ‘Poisson image editing’, ACM Trans. Graph., 2003, 22, (3), pp. 313318.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5133
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5133
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address