Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Spectral clustering and spatial Frobenius norm-based Jaya optimisation for BS of hyperspectral images

Spectral clustering and spatial Frobenius norm-based Jaya optimisation for BS of hyperspectral images

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The hyperspectral images (HSIs) often suffer from Hughes effect, as it records information of a single scene in several spectral bands. This can be mitigated by reducing the dimension of HSI. A novel framework for hybrid band selection (BS) is proposed in this work. The proposed technique is a multi-objective approach, which incorporates clustering (spectral) and intra-band (spatially filtered) de-correlation measure (Frobenius norm) as maximisation of two cost functions. Heuristic optimisers are very sensitive to their associated hyperparameters. So, in the proposed architecture, Jaya optimisation is used for BS, as it does not possess any algorithm-specific control parameter. Spatial and spectral features are extracted for both BS and classification (using support vector machine) for evaluating the effectiveness of the proposed/ experimented approaches. The evaluated performance measures are overall accuracy, average accuracy, and kappa (K). The experimental result shows that the proposed BS approach is better or competent with other experimented state-of-the-art methods. The advantages of the proposed framework can be stated as: (i) spectrally distinct and spatially invariant objective formulation; (ii) Jaya optimisation with minimal control parameters; (iii) optimised ranking for more accurate BS; and (iv) performing classification using spatial–spectral features for further band reduction with the desired accuracy.

References

    1. 1)
      • 17. Datta, A., Ghosh, S., Ghosh, A.: ‘Combination of clustering and ranking techniques for unsupervised band selection of hyperspectral images’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (6), pp. 28142823.
    2. 2)
      • 36. Rodarmel, C., Shan, J.: ‘Principal component analysis for hyperspectral image classification’, Surv. Land Inf. Sci., 2002, 62, (2), pp. 115122.
    3. 3)
      • 24. Zhang, B., Sun, X., Gao, L.R., et al: ‘A method of end-member extraction in hyperspectral remote sensing images based on discrete particle swarm optimization (D-PSO)’, Spectrosc. Spectral Anal., 2011, 31, (9), pp. 24552461.
    4. 4)
      • 32. Yuan, Y., Zheng, X., Lu, X.: ‘Discovering diverse subset for unsupervised hyperspectral band selection’, IEEE Trans. Image Process., 2017, 26, (1), pp. 5164.
    5. 5)
      • 4. Van Der Maaten, L., Postma, E., Van den Herik, J.: ‘Dimensionality reduction: a comparative’, J. Mach. Learn. Res., 2009, 10, pp. 6671.
    6. 6)
      • 1. Manolakis, D., Shaw, G., Keshava, N., et al: ‘Comparative analysis of hyperspectral adaptive matched filter detectors’. Proc. SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VI 4049, Orlando, USA, August 2000, pp. 217.
    7. 7)
      • 9. Chang, C.-I., Du, Q., Sun, T.-L., et al: ‘A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (6), pp. 26312641.
    8. 8)
      • 31. Su, H., Yong, B., Du, Q.: ‘Hyperspectral band selection using improved firefly algorithm’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (1), pp. 6872.
    9. 9)
      • 5. Su, H., Yang, H., Du, Q., et al: ‘Semisupervised band clustering for dimensionality reduction of hyperspectral imagery’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (6), pp. 11351139.
    10. 10)
      • 12. Jia, S., Ji, Z., Qian, Y., et al: ‘Unsupervised band selection for hyperspectral imagery classification without manual band removal’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2012, 5, (2), pp. 531543.
    11. 11)
      • 26. Sun, X., Yang, L., Gao, L., et al: ‘Hyperspectral image clustering method based on artificial bee colony algorithm and Markov random fields’, J. Appl. Remote Sens., 2015, 9, (1), p. 095047.
    12. 12)
      • 23. Gao, L., Zhuang, L., Wu, Y., et al: ‘A quantitative and comparative analysis of different preprocessing implementations of DPSO: a robust end-member extraction algorithm’, Soft Comput., 2016, 20, (12), pp. 46694683.
    13. 13)
      • 8. Yang, H., Du, Q., Su, H., et al: ‘An efficient method for supervised hyperspectral band selection’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (1), pp. 138142.
    14. 14)
      • 29. Gong, M., Zhang, M., Yuan, Y.: ‘Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (1), pp. 544557.
    15. 15)
      • 30. Su, H., Du, Q., Chen, G., et al: ‘Optimized hyperspectral band selection using particle swarm optimization’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (6), pp. 26592670.
    16. 16)
      • 22. Zhang, B., Sun, X., Gao, L., et al: ‘End-member extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (11), pp. 41734176.
    17. 17)
      • 34. Zhu, G., Huang, Y., Lei, J., et al: ‘Unsupervised hyperspectral band selection by dominant set extraction’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (1), pp. 227239.
    18. 18)
      • 35. Rao, R.: ‘Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems’, Int. J. Ind. Eng. Comput., 2016, 7, (1), pp. 1934.
    19. 19)
      • 13. Martínez-Usómartinez-Uso, A., Pla, F., Martínez Sotoca, J., et al: ‘Clustering-based hyperspectral band selection using information measures’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (12), pp. 41584171.
    20. 20)
      • 6. De Backer, S., Kempeneers, P., Debruyn, W., et al: ‘A band selection technique for spectral classification’, IEEE Geosci. Remote Sens. Lett., 2005, 2, (3), pp. 319323.
    21. 21)
      • 20. Gao, L., Gao, J., Li, J., et al: ‘Multiple algorithm integration based on ant colony optimization for end-member extraction from hyperspectral imagery’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (6), pp. 25692582.
    22. 22)
      • 14. Ren, J., Kelman, T., Marshall, S.: ‘Adaptive clustering of spectral components for band selection in hyperspectral imagery’. Hyperspectral Imaging Conf. 2011, Glasgow, UK, May 2011, pp. 9093.
    23. 23)
      • 3. Plaza, A., Benediktsson, J.A., Boardman, J.W., et al: ‘Recent advances in techniques for hyperspectral image processing’, Remote Sens. Environ., 2009, 113, pp. S110S122.
    24. 24)
      • 7. Huang, R., He, M.: ‘Band selection based on feature weighting for classification of hyperspectral data’, IEEE Geosci. Remote Sens. Lett., 2005, 2, (2), pp. 156159.
    25. 25)
      • 16. Qian, Y., Yao, F., Jia, S.: ‘Band selection for hyperspectral imagery using affinity propagation’, IET Comput. Vis., 2009, 3, (4), pp. 213222.
    26. 26)
      • 28. Esmin, A.A., Coelho, R.A., Matwin, S.: ‘A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data’, Artif. Intell. Rev., 2015, 44, (1), pp. 2345.
    27. 27)
      • 27. Sun, X., Yang, L., Zhang, B., et al: ‘Hyperspectral image clustering method based on artificial bee colony algorithm’. 2013 Sixth Int. Conf. Advanced Computational Intelligence (ICACI), Hangzhou, China, October 2013, pp. 106109.
    28. 28)
      • 2. Hughes, G.: ‘On the mean accuracy of statistical pattern recognizers’, IEEE Trans. Inf. Theory, 1968, 14, (1), pp. 5563.
    29. 29)
      • 33. Wang, L., Li, H.-C., Xue, B., et al: ‘Constrained band subset selection for hyperspectral imagery’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (11), pp. 20322036.
    30. 30)
      • 25. Zhong, L., Luo, W., Gao, L.: ‘Particle swarm optimization for nonlinear spectral unmixing: a case study of generalized bilinear model’. 2016 12th Int. Conf. Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, August 2016, pp. 211217.
    31. 31)
      • 21. Xu, S., Bing, Z., Lina, Y., et al: ‘Hyperspectral image clustering using ant colony optimization (ACO) improved by K-means algorithm’. 2010 Third Int. Conf. on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, August 2010, pp. V2474..
    32. 32)
      • 19. Zhang, B., Gao, J., Gao, L., et al: ‘Improvements in the ant colony optimization algorithm for end member extraction from hyperspectral images’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2013, 6, (2), pp. 522530.
    33. 33)
      • 15. Li, S., Qiu, J., Yang, X., et al: ‘A novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search’, Eng. Appl. Artif. Intell., 2014, 27, pp. 241250.
    34. 34)
      • 10. Wang, Q., Lin, J., Yuan, Y.: ‘Salient band selection for hyperspectral image classification via manifold ranking’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (6), pp. 12791289.
    35. 35)
      • 11. Cariou, C., Chehdi, K., Moan, S.L.: ‘Bandclust: an unsupervised band reduction method for hyperspectral remote sensing’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (3), pp. 565569.
    36. 36)
      • 18. Zhang, B., Sun, X., Gao, L., et al: ‘End-member extraction of hyperspectral remote sensing images based on the ant colony optimization (ACO) algorithm’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (7), pp. 26352646.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5109
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5109
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address