Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Use of hyperspectral imaging for cake moisture and hardness prediction

Industrial baking of sponge cakes requires various quality indicators to be measured during production such as moisture content and sponge hardness. Existing techniques for measuring these properties require randomly selected sponges to be removed from the production line before samples are manually cut out of each sponge in a destructive way for testing. These samples are subsequently processed manually using dedicated analysers to measure moisture and texture properties in a lengthy process, which can take a skilled operator around 20 min to complete per sponge. In this study, the authors present a new, single sensor hyperspectral imaging approach, which has the potential to measure both sponge moisture content and hardness simultaneously. In the last decade, hyperspectral imaging systems have reduced in cost and size and, as a result, they are becoming widely used in a number of industries and research areas. Recently, there has been an increased use of this technology in the food industry and in food science applications and research. The application of this technology in the cake production environment, empowered by sophisticated signal and image processing techniques and prediction algorithms as presented in this study has the potential to provide on-line, real-time, stand-off cake quality monitoring.

References

    1. 1)
      • 24. Lu, R.: ‘Detection of bruise on apples using near-infrared hyperspectral imaging’, Trans. ASAE, 2003, 46, (2), pp. 18.
    2. 2)
      • 12. Wu, D., Sun, D.-W.: ‘Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review – part II: applications’, Innovative Food Sci. Emerg. Technol., 2013, 19, pp. 1528.
    3. 3)
      • 31. Leblon, B.: ‘Overview on sensing technologies for real-time monitoring of wood properties’. IASIM – 6th Conf. in Spectral Imaging, Chamonix-Mont-Blanc, France, 2016.
    4. 4)
      • 34. Whitworth, M.B., Millar, S.J., Chau, A.: ‘Food quality assessment by NIR hyperspectral imaging’. Proc. SPIE 7676, Sensing for Agriculture and Food Quality and Safety II, Orlando, USA, 2010.
    5. 5)
      • 7. Mirschel, G., Daikos, O., Scherzer, T., et al: ‘Near-infrared hyperspectral imaging of lamination and finishing processes in textile technology’, NIR News, 2017, 28, (1), pp. 2025.
    6. 6)
      • 43. Wold, S., Sjöström, M., Eriksson, L.: ‘PLS regression: a basic tool of chemometrics’, Chemometr. Intell. Lab. Syst., 2001, 58, pp. 109130.
    7. 7)
      • 6. Mirschel, G., Daikos, O., Steckert, C., et al: ‘Characterisation of sizeson textiles by in-line NIR chamical imaging’. OCM 2017 – Optical Characterization of Materials, Karlsruhe, 2017.
    8. 8)
      • 41. University of the West of England: ‘Pearson's correlation coefficient’. Available at http://learntech.uwe.ac.uk/da/Default.aspx?pageid=1442, accessed 11 May 2017.
    9. 9)
      • 46. Li, H., Lavin, M.A., LeMaster, R.J.: ‘Fast hough transform: a hierarchical approach’, Comput. Vision Graph. Image Process., 1986, 36, pp. 139161.
    10. 10)
      • 5. Denk, M., Gläßer, C., Kurz, T.H., et al: ‘Mapping of iron and steelwork by-products using close range hyperspectral imaging: a case study in Thuringia, Germany’, Eur. J. Sens., 2015, 48, (1), pp. 489509.
    11. 11)
      • 42. Geladi, P., Kowalski, B.R.: ‘Partial least squares regression: a tutorial’, Anal. Chim. Acta, 1986, 185, pp. 117.
    12. 12)
      • 18. Qiao, T., Ren, J., Craigie, C., et al: ‘Comparison between near infrared spectroscopy and hyperspectral imaging in predicting beef eating quality’. Hyperspectral Imaging and Applications Conf. (HSI 2014), Coventry, 2014.
    13. 13)
      • 37. Labsphere Inc.: ‘Spectralon diffuse reflectance standards’. Available at https://www.labsphere.com/site/assets/files/1827/pb-13021-000_rev_02_og_spectralon.pdf, accessed 15 November 2018.
    14. 14)
      • 26. Talensa, P., Morab, L., Morsyc, N., et al: ‘Prediction of water and protein contents and quality classification of spanish cooked ham using NIR hyperspectral imaging’, J. Food Eng., 2013, 117, (3), pp. 272280.
    15. 15)
      • 29. Kobori, H., Gorretta, N., Rabatel, G., et al: ‘Applicability of Vis-NIR hyperspectral imaging for monitoring wood moisture content (MC)’, Holzforschung, 2013, 67, (3), pp. 307314.
    16. 16)
      • 44. Wold, S., Eriksson, L., Trygg, J., et al: ‘The PLS method – partial least squares projections to latent structures – and its applications in industrial RDP (research, development, and production)’ (Umea University, Umea, Sweden, 2004).
    17. 17)
      • 23. Li, J., Rao, X., Ying, Y.: ‘Detection of common defects on oranges using hyperspectral reflectance imaging’, Comput. Electron. Agric., 2011, 78, pp. 3848.
    18. 18)
      • 11. Marshall, S., Kelman, T., Qiao, T., et al: ‘Hyperspectral imaging for food applications’. 23rd European Signal Processing Conf. (EUSIPCO), Nice, 2015.
    19. 19)
      • 21. Andresen, M.S., Dissing, B.S., Løje, H.: ‘Quality assessment of butter cookies applying multispectral imaging’, Food. Sci. Nutr., 2013, 1, (4), p. pp. 315323.
    20. 20)
      • 9. Roggo, Y., Edmond, A., Chalus, P., et al: ‘Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms’, Anal. Chim. Acta, 2005, 535, pp. 7987.
    21. 21)
      • 33. Liu, Z., Møller, F.: ‘Bread water content measurement based on hyperspectral imaging’. Scandinavian Workshop on Imaging Food Quality 2011, Ystad, 2011.
    22. 22)
      • 36. Davidson, M.W.: ‘ZEISS microscopy online campus|tungsten-halogen lamps’. Available at: http://zeiss-campus.magnet.fsu.edu/articles/lightsources/tungstenhalogen.html, accessed 15 November 2018.
    23. 23)
      • 17. Naganathan, G.K., Grimes, L.M., Subbiah, J., et al: ‘Visible/near-infrared hyperspectral imaging for beef tenderness prediction’, Comput. Electron. Agric., 2008, 64, (2), pp. 225233.
    24. 24)
      • 30. Tsuchikawa, S., Kobori, H.: ‘A review of recent application of near infrared spectroscopy to wood science and technology’, J. Wood Sci., 2015, 61, (3), p. pp. 213220.
    25. 25)
      • 2. Hsuan, R., Chein, I.C.: ‘Automatic spectral target recognition in hyperspectral imagery’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, pp. 12321249.
    26. 26)
      • 39. Kamruzzaman, M., Makino, Y., Oshita, S.: ‘Online monitoring of red meat color using hyperspectral imaging’, Meat Sci., 2016, 116, pp. 110117.
    27. 27)
      • 40. Rodgers, J.L., Nicewander, W.A.: ‘Thirteen ways to look at the correlation coefficient’, Am. Stat., 1988, 42, (1), pp. 5966.
    28. 28)
      • 38. BROOKFIELD ENGINEERING LABORATORIES, INC: ‘BROOKFIELD CT3 texture analyzer, operating instructions, manual No. M08-372-E0315’. Available at http://www.brookfieldengineering.com/download/files/CT3manual.pdf, accessed 11 May 2017.
    29. 29)
      • 14. Lu, Y., Huang, Y., Lu, R.: ‘Innovative hyperspectral imaging-based techniques for quality evaluation of fruits and vegetables: a review’, Appl. Sci., 2017, 7, (189), pp. 1421.
    30. 30)
      • 32. Pu, Y.-Y., Sun, D.-W.: ‘Hyperspectral imaging in visualizing the non-uniform drying of mango slices during hot-air and microwave-vacuum drying’. IASIM – 6th Conf. in Spectral Imaging, Chamonix-Mont-Blanc, France, 2016.
    31. 31)
      • 28. Manley, M.: ‘Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials’, Chem. Soc. Rev., 2014, 43, pp. 82008214.
    32. 32)
      • 15. Jayas, D.S., Singh, C.B., Paliwal, J.: ‘Classification of wheat kernels using near-infrared reflectance hyperspectral imaging’, in Da-Wen, Sun (Eds.): ‘Hyperspectral imaging for food quality analysis and control’, (Academic Press/Elsevier, San Diego, California, USA, 2010, 1st edn.) pp. 449470.
    33. 33)
      • 4. Kurz, T., Buckley, S., Howell, J.: ‘Close-range hyperspectral imaging for geological field studies: workflow and methods’, Int. J. Remote Sens., 2013, 34, (5), pp. 17981822.
    34. 34)
      • 13. Dale, M.: ‘Trash talk’ (Imaging & Machine Vision, Europe, 2016), pp. 2022.
    35. 35)
      • 8. Blanch-Perez-del-Notario, C., Lambrechts, A.: ‘New paper on hyperspectral imaging for textile recycling’. 1 January 2016. Available at http://www.resyntex.eu/images/downloads/HSI_2016_paper_final.pdf, accessed 11 May 2017.
    36. 36)
      • 35. Bri, C.: ‘Bakery product development’. 2013. Available at http://www.campdenbri.co.uk/services/bakery-product-development.php.
    37. 37)
      • 3. Bannon, D.: ‘Hyperspectral imaging: cubes and slices’, Nat. Photonics, 2009, 3, pp. 627629.
    38. 38)
      • 16. Huang, H., Liu, L., Ngadi, M.O.: ‘Recent developments in hyperspectral imaging for assessment of food quality and safety’, Sensors, 2014, 14, pp. 72487276.
    39. 39)
      • 25. Shuqin, Y., Dongjian, H., Jifeng, N.: ‘Predicting wheat kernels’ protein content by near infrared hyperspectral imaging’, Int. J. Agric. Biol. Eng., 2016, 9, (2), pp. 163170.
    40. 40)
      • 27. Apan, A., Kelly, R., Phinn, S., et al: ‘Predicting grain protein content in wheat using hyperspectral sensing of in-season crop canopies and partial least squares regression’, Int. J. Geoinf., 2006, 2, pp. 93108.
    41. 41)
      • 1. Goetz, A.F.H., Vane, G., Solomon, J.E., et al: ‘Imaging spectrometry for earth remote sensing’, Science, 1985, 228, pp. 11471153.
    42. 42)
      • 45. Abdi, H.: ‘Partial least square regression, projection on latent structures regression, PLS-regression’, Wiley Interdiscip. Rev.: Comput. Stat., 2010, 2, pp. 97106.
    43. 43)
      • 22. Bensaeed, O., Shariff, A., Mahmud, A.B., et al: ‘Oil palm fruit grading using a hyperspectral device and machine learning algorithm’. 7th IGRSM Int. Remote Sensing & GIS Conf. and Exhibition, Kuala Lumpur, 2014.
    44. 44)
      • 19. Qiao, T., Ren, J., Craigie, C., et al: ‘Quantitative prediction of beef quality using visible and NIR spectroscopy with large data samples under industry conditions’, J. Appl. Spectrosc., 2015, 82, (1), pp. 18.
    45. 45)
      • 20. Qiao, T., Ren, J., Zabalza, J., et al: ‘Prediction of lamb eating quality using hyperspectral imaging’. OCM (Optical Characterization of Materials) 2015, Karlsruhe, 2015.
    46. 46)
      • 10. Mirschel, G., Daikos, O., Scherzer, T., et al: ‘Hyperspectral imaging used for in-line monitoring in textile technology’. IASIM – 6th Conf. in Spectral Imaging, Chamonix-Mont-Blanc, France, 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5106
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5106
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address