access icon free Denoising hyperspectral images using Hilbert vibration decomposition with cluster validation

Denoising of hyperspectral images is an essential step to remove the visual artifacts and improve the quality of an image. There are various sources of noise such as dark current, thermal and read noise produced due to detectors, stochastic error of photo-counting and so on which leads to variability of noise both in spatial and spectral domains. In this study, author proposes a novel denoising method based on concept of Hilbert vibration decomposition (HVD). Being iterative in nature it segregates initial amplitude composition into various components which are composed of slow varying wavelength. Any hyperspectral image is captured by the sensor over contiguous wavelengths. Thus, variation in intensities over the spectral dimension is less. HVD separates pixels in decreasing order of their intensity and results in denoising of the image. To evaluate method, various noise conditions have been tested on three real datasets: Washington DC mall, Urban and Pavia University. The validation is done both visually and quantitatively. The denoising with almost 100% mean structural similarity index confirms superiority of the designed method. Clustering and spectral analysis of various denoised images have also been reported. Clustering accuracy of 65% is achieved by the HVD as compared to other methods.

Inspec keywords: pattern clustering; image classification; vibrations; spectral analysis; iterative methods; image denoising; geophysical image processing

Other keywords: iterative method; novel denoising method; iterative manner; essential step; spatial domains; denoised image; initial amplitude composition; designed method; thermal read noise; cluster validation; visual artefacts; HVD; clustering analysis; contiguous wavelengths; dark current read noise; slow varying wavelength; hyperspectral image; photo-counting; spectral analysis; stochastic error; noise conditions; denoising hyperspectral images; Hilbert vibration decomposition; spectral domains; spectral dimension; results

Subjects: Optical, image and video signal processing; Computer vision and image processing techniques

References

    1. 1)
      • 21. Bernstein, S., Bouchot, J.-L., Reinhardt, M., et al: ‘Generalized analytic signals in image processing: comparison, theory and applications’. Quaternion and Clifford Fourier Transforms and Wavelets, 2013, pp. 221246.
    2. 2)
      • 1. Govender, M., Chetty, K., Bulcock, H.: ‘A review of hyperspectral remote sensing and its application in vegetation and water resource studies’, Water SA, 2007, 33, (2), pp. 145151.
    3. 3)
      • 36. Shukla, U.P., Nanda, S.J.: ‘Parallel social spider clustering algorithm for high dimensional datasets’, Eng. Appl. Artif. Intell., 2016, 56, pp. 7590.
    4. 4)
      • 19. Chaudhuri, S., Kotwal, K.: ‘Hyperspectral image fusion’ (Springer, Berlin, 2013).
    5. 5)
      • 25. Borja Ayerdi Vilches. Hyperspectral remote sensing scenes, 2014.
    6. 6)
      • 13. Feldman, M., Braun, S.: ‘Nonlinear vibrating system identification via Hilbert decomposition’, Mech. Syst. Signal Process., 2017, 84, pp. 6596.
    7. 7)
      • 32. Hedaoo, P., Godbole, S.S.: ‘Wavelet thresholding approach for image denoising’, Int. J. Netw. Secur. Appl. (IJNSA), 2011, 3, (4), pp. 1621.
    8. 8)
      • 16. Demir, B., Erturk, S.: ‘Empirical mode decomposition of hyperspectral images for support vector machine classification’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (11), pp. 40714084.
    9. 9)
      • 10. Yuan, Q., Zhang, L., Shen, H.: ‘Hyperspectral image denoising employing a spectral–spatial adaptive total variation model’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (10), pp. 36603677.
    10. 10)
      • 18. Robles-Kelly, A., Huynh, C.P.: ‘Imaging spectroscopy for scene analysis’ (Springer Science & Business Media, Berlin, 2012).
    11. 11)
      • 12. Feldman, M.: ‘Time-varying vibration decomposition and analysis based on the Hilbert transform’, J. Sound Vib., 2006, 295, (3), pp. 518530.
    12. 12)
      • 30. Song, H., Wang, G., Zhang, K.: ‘Hyperspectral image denoising via low-rank matrix recovery’, Remote Sens. Lett., 2014, 5, (10), pp. 872881.
    13. 13)
      • 31. Jin, F., Fieguth, P., Winger, L., et al: ‘Adaptive wiener filtering of noisy images and image sequences’. Image Processing, 2003. ICIP 2003. Proc. 2003 Int. Conf. on, IEEE, Barcelona, Spain, 2003, pp. III349.
    14. 14)
      • 24. Zhu, F., Wang, Y., Xiang, S., et al: ‘Structured sparse method for hyperspectral unmixing’, ISPRS J. Photogramm. Remote Sens., 2014, 88, pp. 101118.
    15. 15)
      • 23. Purdue Research Foundation. Multispec:a freeware multispectral image data analysis system, 1994.
    16. 16)
      • 20. Motta, G., Rizzo, F., Storer, J.A.: ‘Hyperspectral data compression’ (Springer Science & Business Media, Berlin, 2006).
    17. 17)
      • 8. Wang, Y., Niu, R.: ‘Hyperspectral urban remote sensing image smoothing and enhancement using forward-and-backward diffusion’. Urban Remote Sensing Event, 2009 Joint, IEEE, Shanghai, China, 2009, pp. 15.
    18. 18)
      • 4. Chen, G., Qian, S.-E.: ‘Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (3), pp. 973980.
    19. 19)
      • 11. Chen, S.-L., Hu, X.-Y., Peng, S.-L.: ‘Hyperspectral imagery denoising using a spatial-spectral domain mixing prior’, J. Comput. Sci. Technol., 2012, 27, (4), pp. 851861.
    20. 20)
      • 22. Huang, N.E., Shen, Z., Long, S.R.: ‘A new view of nonlinear water waves: the Hilbert spectrum 1’, Annu. Rev. Fluid Mech., 1999, 31, (1), pp. 417457.
    21. 21)
      • 35. Zhang, L., Zhang, L., Mou, X., et al: ‘Fsim A feature similarity index for image quality assessment’, IEEE Trans. Image Process., 2011, 20, (8), pp. 23782386.
    22. 22)
      • 5. Letexier, D., Bourennane, S.: ‘Noise removal from hyperspectral images by multidimensional filtering’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (7), pp. 20612069.
    23. 23)
      • 34. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    24. 24)
      • 7. Bourennane, S., Fossati, C., Cailly, A.: ‘Improvement of classification for hyperspectral images based on tensor modeling’, IEEE Geosci. Remote Sens. Lett., 2010, 7, (4), pp. 801805.
    25. 25)
      • 28. Aiazzi, B., Alparone, L., Barducci, A., et al: ‘Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers’, 2006.
    26. 26)
      • 17. Wachinger, C., Klein, T., Navab, N.: ‘The 2d analytic signal for envelope detection and feature extraction on ultrasound images’, Med. Image Anal., 2012, 16, (6), pp. 10731084.
    27. 27)
      • 9. Othman, H., Qian, S.-E.: ‘Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage’, IEEE Trans. Geosci. Remote Sens., 2006, 44, (2), pp. 397408.
    28. 28)
      • 26. Feldman, M.: ‘Hilbert transform in vibration analysis’, Mech. Syst. Signal Process., 2011, 25, (3), pp. 735802.
    29. 29)
      • 14. Zhidong, Z., Yang, W.: ‘A new method for processing end effect in empirical mode decomposition’. Communications, Circuits and Systems, 2007. ICCCAS 2007. Int. Conf. on, IEEE, Kokura, Japan, 2007, pp. 841845.
    30. 30)
      • 27. Qian, S.-E., Bergeron, M., Girard, R., et al: ‘Concept study of Canadian hyperspectral mission’. Geoscience and Remote Sensing Symp. (IGARSS), 2014 IEEE Int., IEEE, Quebec City, Canada, 2014, pp. 25782581.
    31. 31)
      • 33. Aggarwal, H.K., Majumdar, A.: ‘Hyperspectral image denoising using spatio-spectral total variation’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (3), pp. 442446.
    32. 32)
      • 3. Atkinson, I., Kamalabadi, F., Jones, D.L.: ‘Wavelet-based hyperspectral image estimation’. Geoscience and Remote Sensing Symp., 2003. IGARSS'03. Proc., IEEE Int., 2003, vol. 2, pp. 743745.
    33. 33)
      • 29. Landgrebe, D.: ‘Hyperspectral image data analysis’, IEEE Signal Process. Mag., 2002, 19, (1), pp. 1728.
    34. 34)
      • 2. Acito, N., Diani, M., Corsini, G.: ‘Signal-dependent noise modeling and model parameter estimation in hyperspectral images’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (8), pp. 29572971.
    35. 35)
      • 15. Janušauskas, A., Jurkonis, R., Lukoševičius, A., et al: ‘The empirical mode decomposition and the discrete wavelet transform for detection of human cataract in ultrasound signals’, Informatica, 2005, 16, (4), pp. 541556.
    36. 36)
      • 6. Renard, N., Bourennane, S.: ‘Improvement of target detection methods by multiway filtering’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (8), pp. 24072417.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.1234
Loading

Related content

content/journals/10.1049/iet-ipr.2017.1234
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading