http://iet.metastore.ingenta.com
1887

Image completion using multispectral imaging

Image completion using multispectral imaging

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here, the authors explore the potential of multispectral imaging applied to image completion. Snapshot multispectral cameras correspond to breakthrough technologies that are suitable for everyday use. Therefore, they correspond to an interesting alternative to digital cameras. In their experiments, multispectral images are acquired using an ultracompact snapshot camera-recorder that senses 16 different spectral channels in the visible spectrum. Direct exploitation of completion algorithms by extension of the spectral channels exhibits only minimum enhancement. A dedicated method that consists in a prior segmentation of the scene has been developed to address this issue. The segmentation derives from an analysis of the spectral data and is employed to constrain research area of exemplar-based completion algorithms. The full processing chain takes benefit from standard methods that were developed by both hyperspectral imaging and computer vision communities. Results indicate that image completion constrained by spectral presegmentation ensures better consideration of the surrounding materials and simultaneously improves rendering consistency, in particular for completion of flat regions that present no clear gradients and little structure variance. The authors validate their method with a perceptual evaluation based on 20 volunteers. This study shows for the first time the potential of multispectral imaging applied to image completion.

References

    1. 1)
      • 1. Kopf, J., Kienzle, W., Drucker, S., et al: ‘Quality prediction for image completion’, ACM Trans. Graph., 2012, 31, (6), p. 131.
    2. 2)
      • 2. Guillemot, C., Le Meur, O.: ‘Image inpainting: overview and recent advances’, IEEE Signal Process. Mag., 2014, 31, (1), pp. 127144.
    3. 3)
      • 3. Kawai, N., Sato, T., Yokoya, N.: ‘Diminished reality based on image inpainting considering background geometry’, IEEE Trans. Vis. Comput. Graphics, 2016, 22, (3), pp. 12361247.
    4. 4)
      • 4. Barnes, C., Shechtman, E., Finkelstein, A., et al: ‘Patchmatch: a randomized correspondence algorithm for structural image editing’, ACM Trans. Graph., 2009, 28, (3), p. 24.
    5. 5)
      • 5. Cao, F., Gousseau, Y., Masnou, S., et al: ‘Geometrically guided exemplar-based inpainting’, SIAM J. Imaging Sci., 2011, 4, (4), pp. 11431179.
    6. 6)
      • 6. Huang, J.-B., Kang, S.B., Ahuja, N., et al: ‘Image completion using planar structure guidance’, ACM Trans. Graph., 2014, 33, (4), p. 129.
    7. 7)
      • 7. Huang, J.-B., Kopf, J., Ahuja, N., et al: ‘Transformation guided image completion’. IEEE Int. Conf. on Computational Photography (ICCP), 2013, pp. 19.
    8. 8)
      • 8. He, K., Sun, J.: ‘Image completion approaches using the statistics of similar patches’, IEEE Trans. Pattern Analysis Mach. Intell., 2014, 36, (12), pp. 24232435.
    9. 9)
      • 9. Hagen, N., Kudenov, M.W.: ‘Review of snapshot spectral imaging technologies’, Opt. Eng., 2013, 52, (9), p. 090901.
    10. 10)
      • 10. Chakrabarti, A., Zickler, T.: ‘Statistics of real-world hyperspectral images’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2011, pp. 193200.
    11. 11)
      • 11. Geelen, B., Tack, N., Lambrechts, A.: ‘A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic’. SPIE MOEMS-MEMS, 2014, p. 89740L.
    12. 12)
      • 12. Li, Q., He, X., Wang, Y., et al: ‘Review of spectral imaging technology in biomedical engineering: achievements and challenges’, J. Biomed. Opt., 2013, 18, (10), p. 100901.
    13. 13)
      • 13. Gordon, H.R., Morel, A.Y.: ‘Remote assessment of ocean color for interpretation of satellite visible imagery: a review’, (Springer Science & Business Media, New York, 2012).
    14. 14)
      • 14. Pope, A., Rees, W.G.: ‘Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification’, Remote Sens. Environ., 2014, 141, pp. 113.
    15. 15)
      • 15. Gendrin, A., Mangold, N., Bibring, J.-P., et al: ‘Sulfates in martian layered terrains: the omega/Mars express view’, Science, 2005, 307, (5715), pp. 15871591.
    16. 16)
      • 16. Bell, S., Upchurch, P., Snavely, N., et al: ‘Material recognition in the wild with the materials in context database’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 34793487.
    17. 17)
      • 17. Bertalmio, M., Vese, L., Sapiro, G., et al: ‘Simultaneous structure and texture image inpainting’, IEEE Trans. Image Process., 2003, 12, (8), pp. 882889.
    18. 18)
      • 18. Criminisi, A., Perez, P., Toyama, K.: ‘Region filling and object removal by exemplar-based image inpainting’, IEEE Trans. Image Process., 2004, 13, (9), pp. 12001212.
    19. 19)
      • 19. Newson, A., Almansa, A., Fradet, M., et al: ‘Video inpainting of complex scenes’, SIAM J. Imaging Sci., 2014, 7, (4), pp. 19932019.
    20. 20)
      • 20. Baek, S.-H., Choi, I., Kim, M.H.: ‘Multiview image completion with space structure propagation’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 488496.
    21. 21)
      • 21. Bertalmio, M., Bertozzi, A.L., Sapiro, G.: ‘Navier-Stokes, fluid dynamics, and image and video inpainting’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2001, vol. 1, p. I-355.
    22. 22)
      • 22. Chen, Y.-L., Hsu, C.-T., Liao, H.-Y.M.: ‘Simultaneous tensor decomposition and completion using factor priors’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (3), pp. 577591.
    23. 23)
      • 23. Efros, A.A., Leung, T.K.: ‘Texture synthesis by non-parametric sampling’. The Proc. of the Seventh IEEE Int. Conf. on Computer Vision, 1999, vol. 2, pp. 10331038.
    24. 24)
      • 24. Wexler, Y., Shechtman, E., Irani, M.: ‘Space-time completion of video’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (3), pp. 463476.
    25. 25)
      • 25. Hays, J., Efros, A.A.: ‘Scene completion using millions of photographs’. ACM Transactions on Graphics, 2007, vol. 26, p. 4.
    26. 26)
      • 26. Pathak, D., Krahenbuhl, P., Donahue, J., et al: ‘Context encoders: feature learning by inpainting’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016.
    27. 27)
      • 27. Yang, C., Lu, X., Lin, Z., et al: ‘High-resolution image inpainting using multi-scale neural patch synthesis’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, July 2017, pp. 40764084.
    28. 28)
      • 28. McCamy, C.S., Marcus, H., Davidson, J.: ‘A color-rendition chart’, J. App. Photog. Eng., 1976, 2, (3), pp. 9599.
    29. 29)
      • 29. Ziemer, P.: ‘Design and implementation of a multispectral imaging system’. Master's thesis, 2013.
    30. 30)
      • 30. Herling, J., Broll, W.: ‘Pixmix: A real-time approach to high-quality diminished reality’. Int. Symp. on Mixed and Augmented Reality, 2012, pp. 141150.
    31. 31)
      • 31. Green, A.A., Berman, M., Switzer, P., et al: ‘A transformation for ordering multispectral data in terms of image quality with implications for noise removal’, IEEE Trans. Geosci. Remote Sens., 1988, 26, (1), pp. 6574.
    32. 32)
      • 32. Ward, J.H.Jr.: ‘Hierarchical grouping to optimize an objective function’, J. Am. Stat. Assoc., 1963, 58, (301), pp. 236244.
    33. 33)
      • 33. Jardine, N., van Rijsbergen, C.J.: ‘The use of hierarchic clustering in information retrieval’, Inf. Storage Retr., 1971, 7, (5), pp. 217240.
    34. 34)
      • 34. Lavoué, G., Mantiuk, R.: ‘Quality assessment in computer graphics’. Visual Signal Quality Assessment, 2015, pp. 243286.
    35. 35)
      • 35. Mantiuk, R.K., Tomaszewska, A., Mantiuk, R.: ‘Comparison of four subjective methods for image quality assessment’. Computer Graphics Forum, 2012, vol. 31, pp. 24782491.
    36. 36)
      • 36. Likert, R.: ‘A technique for the measurement of attitudes’, Arch. Psychol., 1932, 22, pp. 555.
    37. 37)
      • 37. Cahill, N.D., Chew, S.E., Wenger, P.S.: ‘Spatial-spectral dimensionality reduction of hyperspectral imagery with partial knowledge of class labels’. SPIE Defense + Security, 2015, p. 94720S.
    38. 38)
      • 38. Zhao, W., Du, S.: ‘Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (8), pp. 45444554.
    39. 39)
      • 39. Guo, X., Huang, X., Zhang, L., et al: ‘Support tensor machines for classification of hyperspectral remote sensing imagery’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (6), pp. 32483264.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.1203
Loading

Related content

content/journals/10.1049/iet-ipr.2017.1203
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address