http://iet.metastore.ingenta.com
1887

Target detection of hyperspectral image based on spectral saliency

Target detection of hyperspectral image based on spectral saliency

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Target detection of hyperspectral image (HSI) is a research hotspot in the field of remote sensing. It is of particular importance in many domains, especially in military application. Unsupervised target detection is usually more difficult because there is no prior information about target. Traditional algorithms exploit spectral information, only. This study introduces the idea of saliency detection from the visual technique into HSI processing domain and proposes a novel approach named spectral saliency target detection (SSD). It establishes a novel salient model, which utilises both spatial saliency and spectral saliency. In the framework of SSD, it combines the model with spectral matching algorithm to make it perform well even in situations where the target is concealed and small. A HSI set comprised of eight different scenes with complex background is setup to evaluate the performance of the proposed algorithm. The final visible detection results demonstrate that the SSD algorithm outperforms the others. The receiver operation characteristic (ROC) curve and area under the ROC curve are applied to evaluate the results. The proposed algorithm shows superior and stable performance.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.1173
Loading

Related content

content/journals/10.1049/iet-ipr.2017.1173
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address