Localisation and segmentation of optic disc with the fractional-order Darwinian particle swarm optimisation algorithm

Localisation and segmentation of optic disc with the fractional-order Darwinian particle swarm optimisation algorithm

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Automatic optic disc (OD) localisation and segmentation is still a great challenge in computer-aided diagnosis and screening system. Here, a new OD segmentation algorithm is proposed based on the distinct features of OD in terms of its intensity and shape. The algorithm includes four stages: image preprocessing, image segmentation, ellipse fitting, and OD localisation and segmentation. In the preprocessing stage, the blood vessel in the input retinal image is removed by using the morphological operation and median filtering in HSL (hue–saturation–lightness) colour space. In the image segmentation and ellipse fitting stages, the fractional-order Darwinian particle swarm optimisation algorithm is used to extract the brightest region, and the least-squares optimisation is adopted to detect elliptical OD shape. Finally, the smooth OD borders are generated in the last stage. The proposed method is evaluated by the centroid difference, overlapping ratio, overlap score, and success indexes. Experimental results on the retinal images from DRION, MESSIDOR, ORIGA, and many other public databases demonstrate that the proposed method has superior performance, and may be a suitable tool for automated retinal image analysis.


    1. 1)
      • 1. Devasia, T., Jacob, P., Thomas, T.: ‘Automatic optic disc localization and segmentation using swarm intelligence’, World Comput. Sci. Inf. Technol. J., 2015, 5, (6), pp. 9297.
    2. 2)
      • 2. Yu, H., Barriga, E.S., Agurto, C., et al: ‘Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (4), pp. 644657.
    3. 3)
      • 3. Mahfouz, A.E., Fahmy, A.S.: ‘Fast localization of the optic disc using projection of image features’, IEEE Trans. Image Process., 2010, 19, (12), pp. 32853289.
    4. 4)
      • 4. Youssif, A., Ghalwash, A., Ghoneim, A.: ‘Optic disc detection from normalized digital fundus images by means of a vessels direction matched filter’, IEEE Trans. Med. Imaging, 2008, 27, (1), pp. 1118.
    5. 5)
      • 5. Niemeijer, M., Ginneken, B., terHaar, F.: ‘Automatic detection of the optic disc, fovea and vascular arch in digital color photographs of the retina’. Proc. of the British Machine Vision Conf., Oxford, UK, 2005, pp. 109118.
    6. 6)
      • 6. Li, H., Chutatape, O.: ‘Automatic feature extraction in color retinal images by a model based approach’, IEEE Trans. Biomed. Eng., 2004, 51, (2), pp. 246254.
    7. 7)
      • 7. Foracchia, M., Grisan, E., Ruggeri, A.: ‘Detection of optic disk in retinal images by means of a geometrical model of vessel structure’, IEEE Trans. Med. Imaging, 2004, 23, (10), pp. 11891195.
    8. 8)
      • 8. Blancher, L., Krooshof, P.W.T., Posrma, G.J., et al: ‘Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images’, Am. J. Neuroradiol., 2011, 32, (1), pp. 6773.
    9. 9)
      • 9. Lahmiri, S.: ‘Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques’, Biomed. Signal Proc. Control, 2017, 31, pp. 148155.
    10. 10)
      • 10. Liao, M., Zhao, Y.Q., Li, X.H., et al: ‘Automatic segmentation for cell images based on bottleneck detection and ellipse fitting’, Neurocomputing, 2016, 173, (3), pp. 615622.
    11. 11)
      • 11. Winder, R.J., Morrow, P.J., Mcritchie, I.N., et al: ‘Algorithms for digital image processing in diabetic retinopathy’, Comput. Med. Imaging Graph., 2009, 33, (8), pp. 608622.
    12. 12)
      • 12. Youssif, A., Ghalwash, A.Z., Ghoneim, A.: ‘Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter’, IEEE Trans. Med. Imaging, 2008, 27, (1), pp. 1118.
    13. 13)
      • 13. Lalonde, M., Beaulieu, M., Gagnon, L.: ‘Fast and robust optic disk detection using pyramidal decomposition and Hausdorff-based template matching’, IEEE Trans. Med. Imaging, 2001, 20, (11), pp. 11931200.
    14. 14)
      • 14. Salazar-Gonzalez, A.G., Lim, Y.M., Liu, X.H.: ‘Optic disc segmentation by incorporating blood vessel compensation’. Proc. of IEEE Third Int. Workshop on Computational Intelligence in Medical Imaging, Paris, France, 2011, pp. 18.
    15. 15)
      • 15. Hoover, A., Goldbaum, M.: ‘Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels’, IEEE Trans. Med. Imaging, 2003, 22, (8), pp. 951958.
    16. 16)
      • 16. Li, H., Chutatape, O.: ‘Automated feature extraction in color retinal images by a model based approach’, IEEE Trans. Biomed. Eng., 2004, 51, (2), pp. 246254.
    17. 17)
      • 17. Tjandrasa, H., Wijayanti, A., Suciati, N.: ‘Optic nerve head segmentation using Hough transform and active contour’, Telkomnika, 2012, 10, (3), pp. 531536.
    18. 18)
      • 18. Nugroho, H.A., Listyalina, L., Setiawan, N.A., et al: ‘Automated segmentation of optic disc area using mathematical morphology and active contour’. Proc. of Int. Conf. on Computer, Control, Informatics and Its Applications, Bandung, Indonesia, 2015, pp. 1822.
    19. 19)
      • 19. Sopharak, A., Uyyanonvara, B., Barman, S.: ‘Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy C-means clustering’, Sensors, 2009, 9, pp. 21482161.
    20. 20)
      • 20. Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., et al: ‘An efficient method for segmentation of images based on fractional calculus and natural selection’, Expert Syst. Appl., 2012, 39, (16), pp. 1240712417.
    21. 21)
      • 21. Koyuncu, H., Ceylan, R.: ‘Optic disk segmentation with Kapur-ScPSO based cascade multithresholding’. Proc. of Int. Conf. on Bioinformatics and Biomedical Engineering, Granada, Spain, 2016, pp. 206215.
    22. 22)
      • 22. Krishna, M., Jayashree, R., Lakshmi, M.V.: ‘Segmentation of retina-based on fractional PSO technique’, Int. J. Advanced Res. Comput. Commun. Eng., 2013, 2, (3), pp. 13841387.
    23. 23)
      • 23. Dorigo, M., Maniezzo, V., Colorni, A.: ‘Ant system: optimization by a colony of cooperating agents’, IEEE Trans. Syst., Man, Cybernetics, Part B (Cybernetics), 1996, 26, (1), pp. 2941.
    24. 24)
      • 24. Kennedy, J., Eberhat, R.: ‘Particle swam optimization’. Proc. of the IEEE Int. Conf. on Neural Network, Perth, Western Australia, 1995, pp. 19421948.
    25. 25)
      • 25. Kennedy, J., Eberhat, R.: ‘A new optimizer using particle swarm theory’. Proc. of the IEEE Sixth Int. Symp. on Micro Machine and Human Science, Indianapolis, USA, 1995, pp. 3943.
    26. 26)
      • 26. Tillett, J., Rao, T.M., Sahin, F., et al: ‘Darwinian particle swarm optimization’. Proc. of the 2nd Indian Conf. on Artificial Intelligence., Pune, India, 2005, pp. 14741487.
    27. 27)
      • 27. Couceiro, M.S., Martins, F.M.L., Rocha, R.P., et al: ‘Mechanism and convergence analysis of a multi-robot swarm approach based on natural selection’, J. Intell. Robot. Syst., 2014, 76, (2), pp. 353381.
    28. 28)
      • 28. Couceiro, M.S., Rocha, R.P., Ferreira, N.M.F., et al: ‘Introducing the fractional-order Darwinian PSO’, Signal, Image Video Process., 2012, 6, (3), pp. 343350.
    29. 29)
      • 29. Xie, W.Y., Li, Y.S.: ‘An automatic fractional coefficient setting method of FODPSO for hyperspectral image segmentation’, Proc. SPIE, 2015, 9501, pp. 19.
    30. 30)
      • 30. Ghamisi, P., Couceiro, M.S., Benediktsson, J.A.: ‘Extending the fractional order Darwinian particle swarm optimization to segmentation of hyperspectral images’, Proc. SPIE, 2012, 8537, pp. 111.
    31. 31)
      • 31. Wang, D.S., Wang, H.T., Liu, L.: ‘Unknown environment exploration of multi-robot system with the FORDPSO’, Swarm Evol. Comput., 2016, 16, pp. 157174.
    32. 32)
      • 32. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    33. 33)
      • 33. Jonas, J.B., Budde, W.M.., Panda, J.S.: ‘Ophthalmoscopic evaluation of the optic nerve head’, Surv. Ophthalmol., 1999, 43, (4), pp. 293320.
    34. 34)
      • 34. Carmona, E.J., Rincon, M., Carcia-Feijoo, J., et al: ‘Identification of the optic nerve head with genetic algorithms’, Artif. Intell. Med., 2008, 43, (3), pp. 243259.
    35. 35)
      • 35. Decenciere, E., Zhang, X., Cazuguel, G., et al: ‘Feedback on a publicly distributed image database: the Messidor database’, Image Anal. Stereol., 2014, 33, (3), pp. 231234.
    36. 36)
      • 36. Cheng, J., Zhang, Z., Tao, D., et al: ‘Similarity regularized sparse group lasso for cup to disc ratio computation’, Biomed. Optics Express, 2017, 8, (8), pp. 37633777.
    37. 37)
      • 37. Aquino, A., Gegundez-Arias, M.E., Marin, D.: ‘Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques’, IEEE Trans. Med. Imaging, 2010, 29, (11), pp. 18601869.
    38. 38)
      • 38. Niemeijer, M., Abramoff, M.D., Ginneken, B.v.: ‘Segmentation of the optic disc, macula and vascular arch in fundus photographs’, IEEE Trans. Med. Imaging, 2007, 26, (1), pp. 116127.
    39. 39)
      • 39. Roychowdhury, S., Koozekanani, D.D., Kuchinka, S.N., et al: ‘Optic disc boundary and vessel origin segmentation of fundus images’, IEEE J. Biomed. Health Inform., 2016, 20, (6), pp. 15621574.
    40. 40)
      • 40. Couceiro, M., Ghamisi, P.: ‘Fractional order Darwinian particle swarm optimization – applications and evaluation of an evolutionary algorithm’ (Springer International Publishing, AG Switzerland, 2016).
    41. 41)
      • 41. Ghamisi, P., Couceiro, M.S., Martins, F.M.L., et al: ‘Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization’, IEEE Trans. Geosci. Remote Sensing, 2014, 52, (5), pp. 23822394.

Related content

This is a required field
Please enter a valid email address