http://iet.metastore.ingenta.com
1887

K-unknown models detection through clustering in blind source camera identification

K-unknown models detection through clustering in blind source camera identification

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Source camera identification (SCI) is a forensic problem of mapping an image back to its source, often in relation to cybercrime. In this digital era, this problem needs to be addressed with the utmost care as a falsely identified source might implicate an innocent person. A very practical problem in this study is the presence of unknown models in the set of cameras under question. In other words, the images under question might not have originated from any of the camera models that are accessible to the forensic analyst, but from a different inaccessible source. Under such a circumstance, the conventional source detection techniques fail to identify the correct source, and falsely map the image to one of the accessible camera models. To address this problem, here the authors propose an SCI scheme which is capable of identifying N known (accessible) as well as K unknown (inaccessible) camera models. The authors’ experimental results prove that the proposed scheme efficiently separates the known and unknown models, and helps to achieve considerably high source identification accuracy as compared to the state-of-the-art.

References

    1. 1)
      • 1. Tesic, J.: ‘Metadata practices for consumer photos’, IEEE Multimedia, 2005, 12, (3), pp. 8692.
    2. 2)
      • 2. Association Camera & Imaging Products: ‘Exchangeable image file format for digital still cameras: exif version 2.3’. CIPA DC-008-2010 & JEITA CP-3451B Standard, 2010.
    3. 3)
      • 3. Gloe, T.: ‘Feature-based forensic camera model identification’, In: ‘Transactions on data hiding and multimedia security VIII’ (Springer, Berlin, 2012), pp. 4262.
    4. 4)
      • 4. Filipe de, O.C., Silva, E., Eckmann, M., et al: ‘Open set source camera attribution and device linking’, Pattern Recognit. Lett., 2014, 39, pp. 92101.
    5. 5)
      • 5. Huang, Y., Zhang, J., Huang, H.: ‘Camera model identification with unknown models’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (12), pp. 26922704.
    6. 6)
      • 6. Lukas, J., Fridrich, J., Goljan, M.: ‘Digital camera identification from sensor pattern noise’, IEEE Trans. Inf. Forensics Sec., 2006, 1, (2), pp. 205214.
    7. 7)
      • 7. Chen, M., Fridrich, J., Goljan, M., et al: ‘Determining image origin and integrity using sensor noise’, IEEE Trans. Inf. Forensics Sec., 2008, 3, (1), pp. 7490.
    8. 8)
      • 8. Goljan, M., Fridrich, J., Filler, T.: ‘Large scale test of sensor fingerprint camera identification’. IS&T/SPIE Electron. Imaging. Int. Soc. Opt. Photonics, 2009, 7254, pp. 72540I72540I.
    9. 9)
      • 9. Li, C.-T.: ‘Source camera identification using enhanced sensor pattern noise’, IEEE Trans. Inf. Forensics Sec., 2010, 5, (2), pp. 280287.
    10. 10)
      • 10. Bayram, S., Sencar, H.T., Memon, N.: ‘Efficient sensor fingerprint matching through fingerprint binarization’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (4), pp. 14041413.
    11. 11)
      • 11. Lin, X., Li, C.-T.: ‘Preprocessing reference sensor pattern noise via spectrum equalization’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (1), pp. 126140.
    12. 12)
      • 12. Kharrazi, M., Sencar, H.T., Memon, N.: ‘Blind source camera identification’. Int. Conf. Image Processing (ICIP), IEEE, 2004, vol. 1, pp. 709712.
    13. 13)
      • 13. Çeliktutan, O., Sankur, B., Avcibas, I.: ‘Blind identification of source cell-phone model’, IEEE Trans. Inf. Forensics Sec., 2008, 3, (3), pp. 553566.
    14. 14)
      • 14. Tsai, M.-J., Wang, C.-S., Liu, J., et al: ‘Using decision fusion of feature selection in digital forensics for camera source model identification’, Comput. Stand. Interfaces, 2012, 34, (3), pp. 292304.
    15. 15)
      • 15. Xu, B., Wang, X., Zhou, X., et al: ‘Source camera identification from image texture features’, Neurocomputing, 2016, 207, pp. 131140.
    16. 16)
      • 16. Akshatha, K.R., Karunakar, A.K., Anitha, H., et al: ‘Digital camera identification using PRNU: a feature based approach’, Digital Invest., 2016, 19, pp. 6977.
    17. 17)
      • 17. Dirik, A.E., Sencar, H.T., Memon, N.: ‘Digital single lens reflex camera identification from traces of sensor dust’, IEEE Trans. Inf. Forensics Sec., 2008, 3, (3), pp. 539552.
    18. 18)
      • 18. Wu, G., Kang, X., Liu, K.J.R.: ‘A context adaptive predictor of sensor pattern noise for camera source identification’. 19th IEEE Int. Conf. Image Processing, 2012, pp. 237240.
    19. 19)
      • 19. Thai, T.H., Retraint, F., Cogranne, R.: ‘Camera model identification based on the generalized noise model in natural images’, Digit. Signal Process., 2016, 48, pp. 285297.
    20. 20)
      • 20. Lawgely, A., Khelifi, F.: ‘Sensor pattern noise estimation based on improved locally adaptive DCT filtering and weighted averaging for source camera identification and verification’, IEEE Trans. Inf. Forensics Sec., 2016, 2, pp. 392404.
    21. 21)
      • 21. Tsai, M.-J., Wang, C.-S., Liu, J.: ‘A hybrid model for digital camera source identification’. Proc. IEEE Int. Conf. Image Processing, Cairo, Egypt, 2009, pp. 29012904.
    22. 22)
      • 22. Li, C.-T.: ‘Unsupervised classification of digital images using enhanced sensor pattern noise’. Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), Paris, France, 2010, pp. 34293432.
    23. 23)
      • 23. Liu, B.-b., Lee, H.-K., Hu, Y., et al: ‘On classification of source cameras: a graph based approach’. IEEE Int. Workshop on Information Forensics and Security (WIFS), 2010, pp. 15.
    24. 24)
      • 24. Amerini, I., Caldelli, R., Crescenzi, P., et al: ‘Blind image clustering based on the normalized cuts criterion for camera identification’, Signal Process., Image Commun., 2014, 29, (8), pp. 831843.
    25. 25)
      • 25. Villalba, L.J.G., Orozco, A.L.S., Corripio, J.R.: ‘Smartphone image clustering’, Expert Syst. Appl., 2015, 42, (4), pp. 19271940.
    26. 26)
      • 26. Lin, X., Li, C.-T.: ‘Large-scale image clustering based on camera fingerprints’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (4), pp. 793808.
    27. 27)
      • 27. Hartigan, J., Wong, M.: ‘Algorithm AS 136: a k-means clustering algorithm’, J. R. Stat. Soc. C, Appl. Stat., 1979, 28, (1), pp. 100108.
    28. 28)
      • 28. Hopcroft, J., Tarjan, R.: ‘Algorithm 447: efficient algorithms for graph manipulation’, Commun. ACM, 1973, 16, (6), pp. 372378.
    29. 29)
      • 29. Gloe, T., Böhme, R.: ‘The Dresden image database for benchmarking digital image forensics’, J. Digit. Forensic Pract., 2010, 3, (2-4), pp. 150159.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.1142
Loading

Related content

content/journals/10.1049/iet-ipr.2017.1142
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address