Fully automated brain tumour segmentation system in 3D-MRI using symmetry analysis of brain and level sets

Fully automated brain tumour segmentation system in 3D-MRI using symmetry analysis of brain and level sets

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new fully automated, fast, and accurate brain tumour segmentation method which automatically detects and extracts whole tumours from 3D-MRI. The proposed method is based on a hybrid approach that relies on a brain symmetry analysis method and a combining region-based and boundary-based segmentation methods. The segmentation process consists of three main stages. In the first one, image pre-processing is applied to remove any noise, and to extract the brain from the head image. In the second stage, automated tumour detection is performed. It is based essentially on FBB method using brain symmetry. The obtained result constitutes the automatic initialisation of a deformable model, thus removing the need of selecting the initial region of interest by the user. Finally, the third stage focuses on the application of region growing combined with 3D deformable model based on geodesic level-set to detect the tumour boundaries containing the initial region, computed previously, regardless of its shape and size. The proposed segmentation system has been tested and evaluated on 3D-MRIs of 285 subjects with different tumour types and shapes obtained from BraTS'2017 dataset. The obtained results turn out to be promising and objective as well as close to ground truth data.

Related content

This is a required field
Please enter a valid email address