http://iet.metastore.ingenta.com
1887

Colour image encryption technique using differential evolution in non-subsampled contourlet transform domain

Colour image encryption technique using differential evolution in non-subsampled contourlet transform domain

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The main challenges of image encryption are robustness against attacks, key space, key sensitivity, and diffusion. To deal with these challenges, a differential evolution-based image encryption technique is proposed. In the proposed technique, two concepts are utilised to encrypt the images in an efficient manner. The first one is Arnold transform, which is utilised to permute the pixels position of an input image to generate a scrambled image. The second one is differential evolution, which is used to tune the parameters required by a beta chaotic map. Since the beta chaotic map suffers from parameter tuning issue. The entropy of an encrypted image is used as a fitness function. The proposed technique is compared with seven well-known image encryption techniques over five well-known images. The experimental results reveal that the proposed technique outperforms the other existing techniques in terms of security and better visual quality.

References

    1. 1)
      • 1. Sivakumar, T., Venkatesan, R.: ‘A novel image encryption using calligraphy based scan method and random number’, KSII Trans. Internet Inf. Syst., 2015, 9, (6), pp. 23172337.
    2. 2)
      • 2. Ahmad, J., Khan, M.A., Ahmed, F., et al: ‘A novel image encryption scheme based on orthogonal matrix, skew tent map, and XOR operation’, Neural Comput. Appl., 2017, pp. 111, doi: 10.1007/s0052.
    3. 3)
      • 3. Forouzan, B.A., Mukhopadhyay, D.: ‘Cryptography and network security (Sie)’ (McGraw-Hill Education, New York, USA, 2011).
    4. 4)
      • 4. Chai, X., Gan, Z., Yuan, K., et al: ‘A novel image encryption scheme based on DNA sequence operations and chaotic systems’, Neural Comput. Appl., 2017, pp. 119, doi: 10.1007/s00521-017-2993-9.
    5. 5)
      • 5. Chai, X., Gan, Z., Yang, K., et al: ‘An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and {DNA} sequence operations’, Signal Process., Image Commun., 2017, 52, pp. 619.
    6. 6)
      • 6. Zahmoul, R., Ejbali, R., Zaied, M.: ‘Image encryption based on new beta chaotic maps’, Opt. Lasers Eng., 2017, 96, pp. 3949.
    7. 7)
      • 7. Khan, M., Asghar, Z.: ‘A novel construction of substitution box for image encryption applications with gingerbreadman chaotic map and s8 permutation’, Neural Comput. Appl., 2016, 29, (4), pp. 993999.
    8. 8)
      • 8. Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S.M., et al: ‘A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process’, Multimedia Tools Appl., 2014, 71, (3), pp. 14691497.
    9. 9)
      • 9. Khan, M., Shah, T.: ‘A novel statistical analysis of chaotic S-box in image encryption’, 3D Res., 2014, 5, (3), pp. 18.
    10. 10)
      • 10. Shannon, C.E.: ‘Communication theory of secrecy systems’, Bell Labs Tech. J., 1949, 28, (4), pp. 656715.
    11. 11)
      • 11. Al-Hazaimeh, O.M., Al-Jamal, M.F., Alhindawi, N., et al: ‘Image encryption algorithm based on Lorenz chaotic map with dynamic secret keys’, Neural Comput. Appl., 2017, pp. 111, doi: 10.1007/s00521-017-3195-1.
    12. 12)
      • 12. Wang, X., Xu, D.: ‘A novel image encryption scheme based on Brownian motion and PWLCM chaotic system’, Nonlinear Dyn., 2014, 75, (1–2), pp. 345353.
    13. 13)
      • 13. Shih, F.Y., Wu, S.Y.: ‘Combinational image watermarking in the spatial and frequency domains’, Pattern Recognit., 2003, 36, (4), pp. 969975.
    14. 14)
      • 14. Zhang, Q., Shen, M., Li, B., et al: ‘Chaos-based color image encryption scheme in the wavelet domain’. 2014 7th Int. Congress on Image and Signal Processing (CISP), Dalian, China, 2014, pp. 330334.
    15. 15)
      • 15. Toughi, S., Fathi, M.H., Sekhavat, Y.A.: ‘An image encryption scheme based on elliptic curve pseudo random and advanced encryption system’, Signal Process., 2017, 141, pp. 217227.
    16. 16)
      • 16. Nosrati, K., Volos, C., Azemi, A.: ‘Cubature Kalman filter-based chaotic synchronization and image encryption’, Signal Process., Image Commun., 2017, 58, pp. 3548.
    17. 17)
      • 17. Cao, C., Sun, K., Liu, W.: ‘A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map’, Signal Process., 2018, 143, pp. 122133.
    18. 18)
      • 18. Ye, G., Huang, X.: ‘An efficient symmetric image encryption algorithm based on an intertwining logistic map’, Neurocomputing, 2017, 251, pp. 4553.
    19. 19)
      • 19. Salman, S., Elsadany, A.: ‘On the bifurcation of Marotto's map and its application in image encryption’, J. Comput. Appl. Math., 2018, 328, pp. 177196.
    20. 20)
      • 20. Wang, X., Zhu, X., Wu, X., et al: ‘Image encryption algorithm based on multiple mixed hash functions and cyclic shift’, Opt. Lasers Eng., 2017, doi: 10.1016/j.optlaseng.2017.06.015.
    21. 21)
      • 21. Chai, X., Gan, Z., Chen, Y., et al: ‘A visually secure image encryption scheme based on compressive sensing’, Signal Process., 2017, 134, pp. 3551.
    22. 22)
      • 22. Xu, L., Li, Z., Li, J., et al: ‘A novel bit-level image encryption algorithm based on chaotic maps’, Opt. Lasers Eng., 2016, 78, pp. 1725.
    23. 23)
      • 23. Ghebleh, M., Kanso, A.: ‘A novel efficient image encryption scheme based on chained skew tent maps’, Neural Comput. Appl., 2017, pp. 116, doi: 10.1007/s00521-017-3199-x.
    24. 24)
      • 24. Chen, J.-X., Zhu, Z.-L., Fu, C., et al: ‘A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism’, Commun. Nonlinear Sci. Numer. Simul., 2015, 20, (3), pp. 846860.
    25. 25)
      • 25. Wu, X., Wang, D., Kurths, J., et al: ‘A novel lossless color image encryption scheme using 2D DWT and 6D hyperchaotic system’, Inf. Sci., 2016, 349, pp. 137153.
    26. 26)
      • 26. Wu, Y., Zhou, Y., Noonan, J.P., et al: ‘Design of image cipher using latin squares’, Inf. Sci., 2014, 264, pp. 317339.
    27. 27)
      • 27. Lang, J., Zhang, Z.-G.: ‘Blind digital watermarking method in the fractional Fourier transform domain’, Opt. Lasers Eng., 2014, 53, pp. 112121.
    28. 28)
      • 28. Luo, Y., Du, M., Liu, J.: ‘A symmetrical image encryption scheme in wavelet and time domain’, Commun. Nonlinear Sci. Numer. Simul., 2015, 20, (2), pp. 447460.
    29. 29)
      • 29. Chen, H., Tanougast, C., Liu, Z., et al: ‘Securing color image by using hyperchaotic system in gyrator transform domains’, Opt. Quantum Electron., 2016, 48, (8), p. 396.
    30. 30)
      • 30. Kanso, A., Ghebleh, M.: ‘An algorithm for encryption of secret images into meaningful images’, Opt. Lasers Eng., 2017, 90, pp. 196208.
    31. 31)
      • 31. Singh, S., Rathore, V.S., Singh, R.: ‘Hybrid NSCT domain multiple watermarking for medical images’, Multimedia Tools Appl., 2017, 76, (3), pp. 35573575.
    32. 32)
      • 32. Yingkun, H., Chunxia, Z., Mingxia, L., et al: ‘The nonsubsampled contourlet-wavelet hybrid transform: design and application to image watermarking’. 2008 Int. Conf. on Computer Science and Software Engineering, Hubei, China, 2008, 3, pp. 627630.
    33. 33)
      • 33. Abdullah, A.H., Enayatifar, R., Lee, M.: ‘A hybrid genetic algorithm and chaotic function model for image encryption’, AEU-Int. J. Electron. Commun., 2012, 66, (10), pp. 806816.
    34. 34)
      • 34. Enayatifar, R., Abdullah, A.H., Isnin, I.F.: ‘Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence’, Opt. Lasers Eng., 2014, 56, pp. 8393.
    35. 35)
      • 35. Zhang, X., Wang, X., Cheng, Y.: ‘Image encryption based on a genetic algorithm and a chaotic system’, IEICE Trans. Commun., 2015, 98, (5), pp. 824833.
    36. 36)
      • 36. Sreelaja, N., Pai, G.V.: ‘Stream cipher for binary image encryption using ant colony optimization based key generation’, Appl. Soft Comput., 2012, 12, (9), pp. 28792895.
    37. 37)
      • 37. Enayatifar, R., Abdullah, A.H., Lee, M.: ‘A weighted discrete imperialist competitive algorithm (WDICA) combined with chaotic map for image encryption’, Opt. Lasers Eng., 2013, 51, (9), pp. 10661077.
    38. 38)
      • 38. Talarposhti, K.M., Jamei, M.K.: ‘A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map’, Opt. Lasers Eng., 2016, 81, pp. 2134.
    39. 39)
      • 39. Das, S., Suganthan, P.N.: ‘Differential evolution: A survey of the state-of-the-art’, IEEE Trans. Evol. Comput., 2011, 15, (1), pp. 431.
    40. 40)
      • 40. Farwa, S., Muhammad, N., Shah, T., et al: ‘A novel image encryption based on algebraic S-box and Arnold transform’, 3D Res., 2017, 8, (3), p. 26.
    41. 41)
      • 41. Zou, J., Weng, T.: ‘A new image encryption instant communication method based on matrix transformation’. Advances in Intelligent Information Hiding and Multimedia Signal Processing: Proceeding of the Twelfth Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, 21–23 November 2016, Kaohsiung, Taiwan, 2017, 1, pp. 321329.
    42. 42)
      • 42. Vaish, A., Kumar, M.: ‘Color image encryption using MSVD, DWT and Arnold transform in fractional Fourier domain’, Optik-Int. J. Light Electron Opt., 2017, 145, pp. 273283.
    43. 43)
      • 43. Da Cunha, A.L., Zhou, J., Do, M.N.: ‘The nonsubsampled contourlet transform: theory, design, and applications’, IEEE Trans. Image Process., 2006, 15, (10), pp. 30893101.
    44. 44)
      • 44. Xie, X., Lai, J., Zheng, W.-S.: ‘Extraction of illumination invariant facial features from a single image using nonsubsampled contourlet transform’, Pattern Recognit., 2010, 43, (12), pp. 41774189.
    45. 45)
      • 45. Chen, E., Wang, J., Qi, L., et al: ‘A novel multiscale edge detection approach based on nonsubsampled contourlet transform and edge tracking’, Math. Probl. Eng., 2015, 2015, pp. 115.
    46. 46)
      • 46. Shah, A., Gupta, S.: ‘Optimum multiscale decomposition in NSCT-based single image super resolution’, Imag. Sci. J., 2016, 64, (3), pp. 140151.
    47. 47)
      • 47. Wang, X., Chen, C.: ‘Image fusion for synthetic aperture radar and multispectral images based on sub-band-modulated non-subsampled contourlet transform and pulse coupled neural network methods’, Imag. Sci. J., 2016, 64, (2), pp. 8793.
    48. 48)
      • 48. Qin, A.K., Huang, V.L., Suganthan, P.N.: ‘Differential evolution algorithm with strategy adaptation for global numerical optimization’, IEEE Trans. Evol. Comput., 2009, 13, (2), pp. 398417.
    49. 49)
      • 49. Zhang, W., Wong, K.-W., Yu, H., et al: ‘An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, (8), pp. 20662080.
    50. 50)
      • 50. The USC-SIPI image database’. Signal and Image Processing Institute. Available at http://sipi.usc.edu/database/ 2017.
    51. 51)
      • 51. Khan, M., Shah, T.: ‘An efficient chaotic image encryption scheme’, Neural Comput. Appl., 2015, 26, (5), pp. 11371148.
    52. 52)
      • 52. El-Samie, F.E.A., Ahmed, H.E.H., Elashry, I.F., et al: ‘Image encryption: a communication perspective’ (CRC Press, Boca Raton, USA, 2013).
    53. 53)
      • 53. Belazi, A., El-Latif, A.A.A., Belghith, S.: ‘A novel image encryption scheme based on substitution-permutation network and chaos’, Signal Process., 2016, 128, pp. 155170.
    54. 54)
      • 54. Ghebleh, M., Kanso, A., Noura, H.: ‘An image encryption scheme based on irregularly decimated chaotic maps’, Signal Process., Image Commun., 2014, 29, (5), pp. 618627.
    55. 55)
      • 55. Rawat, N., Kim, B., Kumar, R.: ‘Fast digital image encryption based on compressive sensing using structurally random matrices and Arnold transform technique’, Optik – Int. J. Light Electron Opt., 2016, 127, (4), pp. 22822286.
    56. 56)
      • 56. Zhang, Y., Xu, B., Zhou, N.: ‘A novel image compression–encryption hybrid algorithm based on the analysis sparse representation’, Opt. Commun., 2017, 392, pp. 223233.
    57. 57)
      • 57. Khan, M., Shah, T., Batool, S.I.: ‘Construction of s-box based on chaotic Boolean functions and its application in image encryption’, Neural Comput. Appl., 2016, 27, (3), pp. 677685.
    58. 58)
      • 58. Li, X.-W., Lee, I.-K.: ‘Modified computational integral imaging-based double image encryption using fractional Fourier transform’, Opt. Lasers Eng., 2015, 66, pp. 112121.
    59. 59)
      • 59. Wang, Y., Quan, C., Tay, C.: ‘Optical color image encryption without information disclosure using phase-truncated Fresnel transform and a random amplitude mask’, Opt. Commun., 2015, 344, pp. 147155.
    60. 60)
      • 60. Ahmad, J., Hwang, S.O.: ‘A secure image encryption scheme based on chaotic maps and affine transformation’, Multimedia Tools Appl., 2016, 75, (21), pp. 1395113976.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.1016
Loading

Related content

content/journals/10.1049/iet-ipr.2017.1016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address