Multi-directional colour edge detector using LQS convolution

Multi-directional colour edge detector using LQS convolution

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new linear colour image filter based on linear quaternion systems (LQSs) is introduced. It detects horizontal, vertical, left- and right-diagonal edges with a single LQS convolution mask. The proposed filter is a canonic minimal filter of four LQS filters, each with different angles of rotation combined parallel wise. Different angles of rotation are a key features of the new filter such that horizontal, vertical, left, and right-diagonal LQS filter masks rotate pixels through angles , , , and , respectively. Although, the four LQS masks are combined parallel to make a single LQS mask but derived using four quaternion convolutions, one for each direction of edges, the LQS filter produces a result without the combination of results from four separate edge detectors. This methodology could be generalised to design more elaborate LQS filters to perform other geometric operations on colour image pixels. The proposed filter translates smoothly changing colours to different shades of grey and produces coloured edges in multiple directions, where there is a sudden change of colour in the original image. Another key idea of the proposed filter is that it is linear because it operates in homogeneous coordinates.


    1. 1)
      • 1. Koschan, A., Abidi, M.: ‘Detection and classification of edges in color images’, IEEE Signal Process. Mag., 2005, 220, (1), pp. 15281530. Available at
    2. 2)
      • 2. Trahanias, P.E., Venetsanopoulos, A.N.: ‘Color edge detection using vector order statistics’, IEEE Trans. Image Process., 1993, 20, (2), pp. 259264. Available at
    3. 3)
      • 3. Economou, G.: ‘Detecting edges using density value’, Electron. Lett., 2004, 400, (24), pp. 15281530. Available at
    4. 4)
      • 4. Sangwine, S.J.: ‘Colour image edge detector based on quaternion convolution’, Electron. Lett., 1998, 340, (10), pp. 969971. Available at
    5. 5)
      • 5. Evans, C.J., Sangwine, S.J., Ell, T.A.: ‘Hypercomplex color-sensitive smoothing filters’. Proc. 2000 Int. Conf. Image Processing (ICIP), Vancouver, British Columbia, Canada, September 2000, 1, pp. 541544. Available at
    6. 6)
      • 6. Sangwine, S.J., Ell, T.A.: ‘Colour in i i image processing’, Electron. Commun. Eng. J., 2000, 12, (5), pp. 211219.
    7. 7)
      • 7. Sangwine, S.J.: ‘Colour image filters based on hypercomplex convolution’. IEE Proc., Vis., Image Signal Process., 2000, 1470, (2), pp. 8993.
    8. 8)
      • 8. Sangwine, S.J., Gatsheni, B.N., Ell, T.A.: ‘Vector amplifications for color dependent image filtering’. Proc. 2003 Int. Conf. Image Processing (ICIP), Barcelona, Spain, September 2003, pp. 129132. Available at
    9. 9)
      • 9. Sangwine, S.J., Ell, T.A., Gatsheni, B.N.: ‘Colour-dependent linear vector image filtering’. Proc. 12th European Signal Processing Conf. (EUSIPCO), Vienna, Austria, September 2004, pp. 585588.
    10. 10)
      • 10. Ell, T.A., Sangwine, S.J.: ‘Projective-space colour filters using quaternion algebra’. 2008 16th European Signal Processing Conf., 2008, pp. 2529.
    11. 11)
      • 11. Pei, S.C., Cheng, C.M.: ‘Color image processing by using binary quaternion- moment-preserving thresholding technique’, IEEE Trans. Image Process., 1999, 80, (5), pp. 614628. Available at
    12. 12)
      • 12. Jin, L., Li, D.: ‘An efficient color-impulse detector and its application to color images’, IEEE Signal Process. Lett., 2007, 140, (6), pp. 397400. Available at
    13. 13)
      • 13. Said, S., Bihan, N.L., Sangwine, S.J.: ‘Fast complexified quaternion Fourier transform’, IEEE Trans. Signal Process., 2008, 560, (4), pp. 15221531. Available at
    14. 14)
      • 14. Denis, P., Carré, P., Fernandez-Maloigne, C.: ‘Spatial and spectral quaternionic approaches for colour images’, Comput. Vis. Image Underst., 2007, 1070, (1–2), pp. 7487, ISSN 1077-3142. Available at
    15. 15)
      • 15. Shi, L., Funt, B.: ‘Quaternion color texture segmentation’. Comput. Vis. Image Underst., 2007, 107, (1–2), pp. 8896.
    16. 16)
      • 16. Meserve, B.E.: ‘Fundamental concepts of geometry’ (Dover, New York, 1983), Corrected reprint of 1959 edition.
    17. 17)
      • 17. Sangwine, S.J.: ‘Perspectives on color image processing by linear vector methods using projective geometric transformations, advances in imaging and electron physics’, 175 (Academic Press, Cambridge, MA, 2013), pp. 283307, chapter 6. Available at
    18. 18)
      • 18. Kuipers, J.B.: ‘Quaternions and rotation sequences’ (Princeton University Press, Princeton, NJ, 1999).
    19. 19)
      • 19. Hamilton, W.R.: ‘Lectures on quaternions’ (Hodges and Smith, Dublin, 1853). Available at
    20. 20)
      • 20. Ell, T.A.: ‘On systems of linear quaternion functions’. Preprint available at, February 2007.
    21. 21)
      • 21. Ell, T.A.: ‘Hypercomplex color affine filters’. IEEE Int. Conf. Image Processing (ICIP) 2007, San Antonio, TX, USA, September 2007. Available at
    22. 22)
      • 22. Altmann, S.L.: ‘Rotations, quaternions, and double groups’ (Oxford University Press, Oxford, 1986).
    23. 23)
      • 23. Ell, T.A., Sangwine, S.J.: ‘Linear quaternion systems toolbox for MATLAB’, 2007. Available at
    24. 24)
      • 24. Hamilton, W.R.: ‘Elements of quaternions’ (Longmans, Green and Co., London, 1866).
    25. 25)
      • 25. Quaternion Toolbox for MATLAB®, Version 2 with support for octonions. Online, 2013. Available at
    26. 26)
      • 26. Ward, J.P.: ‘Quaternions and Cayley numbers: algebra and applications, mathematics and its applications’, vol. 175 (Springer, Dordrecht, 1997). Available at

Related content

This is a required field
Please enter a valid email address