http://iet.metastore.ingenta.com
1887

Curvelet-based multiscale denoising using non-local means & guided image filter

Curvelet-based multiscale denoising using non-local means & guided image filter

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an image denoising technique using multiscale non-local means (NLM) filtering combined with hard thresholding in curvelet domain. The inevitable ringing artefacts in the reconstructed image – due to thresholding – is further processed using a guided image filter for better preservation of local structures like edges, textures and small details. The authors decomposed the image into three different curvelet scales including the approximation and the fine scale. The low-frequency noise in the approximation sub-band and the edges with small textural details in the fine scale are processed independently using a multiscale NLM filter. On the other hand, the hard thresholding in the remaining coarser scale is applied to separate the signal and the noise subspace. Experimental results on both greyscale and colour images indicate that the proposed approach is competitive at lower noise strength with respect to peak signal to noise ratio and structural similarity index measure and excels in performance at higher noise strength compared with several state-of-the-art algorithms.

References

    1. 1)
      • 1. Milanfar, P.: ‘A tour of modern image filtering: new insights and methods, both practical and theoretical’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 106128.
    2. 2)
      • 2. Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. Sixth Int. Conf. on Computer Vision, 1998, pp. 839846.
    3. 3)
      • 3. Buades, A., Coll, B., Morel, J.M.: ‘A review of image denoising algorithms, with a new one’, Multiscale Model. Simul., 2005, 4, (2), pp. 490530.
    4. 4)
      • 4. He, K., Sun, J., Tang, X..: ‘Guided image filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (6), pp. 13971409.
    5. 5)
      • 5. Donoho, D.L., Johnstone, J.M.: ‘Ideal spatial adaptation by wavelet shrinkage’, Biometrika, 1994, 81, (3), pp. 425455.
    6. 6)
      • 6. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., et al: ‘Wavelet shrinkage: asymptopia?’, J. R. Stat. Soc. B, Methodol., 1995, 57, (2), pp. 301369.
    7. 7)
      • 7. Chang, S.G., Yu, B., Vetterli, M.: ‘Adaptive wavelet thresholding for image denoising and compression’, IEEE Trans. Image Process., 2000, 9, (9), pp. 15321546.
    8. 8)
      • 8. Sendur, L., Selesnick, I.W.: ‘Bivariate shrinkage with local variance estimation’, IEEE Signal Process. Lett., 2002, 9, (12), pp. 438441.
    9. 9)
      • 9. Pizurica, A., Philips, W.: ‘Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising’, IEEE Trans. Image Process., 2006, 15, (3), pp. 654665.
    10. 10)
      • 10. Blu, T., Luisier, F.: ‘The SURE-LET approach to image denoising’, IEEE Trans. Image Process., 2007, 16, (11), pp. 27782786.
    11. 11)
      • 11. Dengwen, Z., Wengang, C.: ‘Image denoising with an optimal threshold and neighbouring window’, Pattern Recognit. Lett., 2008, 29, (11), pp. 16941697.
    12. 12)
      • 12. Starck, J.L., Candès, E.J., Donoho, D.L.: ‘The curvelet transform for image denoising’, IEEE Trans. Image Process., 2002, 11, (6), pp. 670684.
    13. 13)
      • 13. Zhang, M., Gunturk, B.K.: ‘Multiresolution bilateral filtering for image denoising’, IEEE Trans. Image Process., 2008, 17, (12), pp. 23242333.
    14. 14)
      • 14. Knaus, C., Zwicker, M.: ‘Dual-domain image denoising’. 2013 20th IEEE Int. Conf. on Image Processing (ICIP), 2013, pp. 440444.
    15. 15)
      • 15. Ma, J., Plonka, G.: ‘The curvelet transform’, IEEE Signal Process. Mag., 2010, 27, (2), pp. 118133.
    16. 16)
      • 16. Wu, K., Zhang, X., Ding, M.: ‘Curvelet based non-local means algorithm for image denoising’, AEU-Int. J. Electron. Commun., 2014, 68, (1), pp. 3743.
    17. 17)
      • 17. Kumar, B.S.: ‘Image denoising based on non-local means filter and its method noise thresholding’, Signal Image Video Process., 2013, 7, (6), pp. 12111227.
    18. 18)
      • 18. Coupé, P., Manjón, J.V., Robles, M., et al: ‘Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising’, IET Image Process., 2012, 6, (5), pp. 558568.
    19. 19)
      • 19. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-D transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
    20. 20)
      • 20. Knaus, C., Zwicker, M.: ‘Progressive image denoising’, IEEE Trans. Image Process., 2014, 23, (7), pp. 31143125.
    21. 21)
      • 21. Zha, Z., Liu, X., Zhou, Z., et al: ‘Image denoising via group sparsity residual constraintIEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017, pp. 17871791, doi: 10.1109/ICASSP.2017.7952464.
    22. 22)
      • 22. Karami, A., Tafakori, L.: ‘Image denoising using generalised Cauchy filter’, IET Image Process., 2017, 11, (9), pp. 767776.
    23. 23)
      • 23. Buades, A., Coll, B., Morel, J.M.: ‘Non-local means denoising’, Image Process. Online, 2011, 1, pp. 208212.
    24. 24)
      • 24. Deledalle, C.A., Duval, V., Salmon, S.: ‘Non-local methods with shape-adaptive patches (NLM-SAP)’, J. Math. Imag. Vis., 2012, 43, (2), pp. 103120.
    25. 25)
      • 25. Alecu, A., Munteanu, A., Pizurica, A., et al: ‘Information-theoretic analysis of dependencies between curvelet coefficients’. IEEE Int. Conf. on Image Processing, 2006, pp. 16171620.
    26. 26)
      • 26. Luisier, F., Blu, T.: ‘SURE-LET multichannel image denoising: interscale orthonormal wavelet thresholding’, IEEE Trans. Image Process., 2008, 17, (4), pp. 482492.
    27. 27)
      • 27. Podpora, M., Korbas, G.P., Kawala-Janik, A.: ‘YUV vs RGB-choosing a color space for human-machine interaction’. Position papers of the 2014 Federated Conf. on Computer Science and Information Systems, 2014, pp. 2934.
    28. 28)
      • 28. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    29. 29)
      • 29. Zhang, L., Dong, W., Zhang, D., et al: ‘Two-stage image denoising by principal component analysis with local pixel grouping’, Pattern Recognit., 2010, 43, (4), pp. 15311549.
    30. 30)
      • 30. Ponomarenko, N., Lukin, V., Zelensky, A., et al: ‘Tid2008-a database for evaluation of full-reference visual quality assessment metrics’, Adv. Mod. Radioelectron., 2009, 10, (4), pp. 3045.
    31. 31)
      • 31. Easley, G., Labate, D., Lim, W.Q.: ‘Sparse directional image representations using the discrete shearlet transform’, Appl. Comput. Harmon. Anal., 2008, 21, (1), pp. 2546.
    32. 32)
      • 32. Deledalle, C.A., Salmon, J., Dalalyan, A.S.: ‘Image denoising with patch based PCA: local versus global’. British Machine Vision Conf. (BMVC), 2011, vol. 81, pp. 425455.
    33. 33)
      • 33. Easley, G., Labate, D., Lim, W.Q.: ‘k -SVD: An algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 43114322.
    34. 34)
      • 34. Kroon, D.J.: ‘Fast Non-local means 1D, 2D color and 3D’, https://in.mathworks.com/matlabcentral/fileexchange/27395-fast-non-local-means-1d--2d-color-and-3d, accessed April 2017.
    35. 35)
      • 35. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space’. IEEE Int. Conf. on Image Processing (ICIP), 2007, vol. 1, pp. I313.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0825
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0825
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address