Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Fuzzy multiclass active learning for hyperspectral image classification

Fuzzy multiclass active learning for hyperspectral image classification

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The possibility theory, which is an extension of fuzzy sets and fuzzy logic, has shown considerable potential for solving active learning (AL) problems, particularly for multiclass scenarios’ classification. Hence, two recently proposed fuzzy multiclass AL algorithms (classification ambiguity (CA) and fuzzy C-order ambiguity (FCOA)) are investigated to properly generalise them for classifying hyperspectral images, and two improved versions of the CA and FCOA are proposed. In addition to comparing the performances of the original and improved algorithms, several other state-of-the-art AL methods are evaluated, such as breaking ties, margin sampling, and multi-class level uncertainty, with or without diversity criteria such as angle-based diversity (ABD), clustering-based diversity (CBD), and enhanced clustering-based diversity (ECBD). Tests on two benchmark hyperspectral images confirm that the proposed improved algorithms are superior to and more effective than the original ones.

References

    1. 1)
      • 7. Settles, B.: ‘Active learning literature survey’, University of Wisconsin, Madison, 2010, vol. 52, no. 55–66, p. 11.
    2. 2)
      • 16. Xu, Z., Yu, K., Tresp, V., et al: ‘Representative sampling for text classification using support vector machines’. European Conf. on Information Retrieval, 2003, pp. 393407.
    3. 3)
      • 2. Foody, G.M., Mathur, A.: ‘Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification’, Remote Sens. Environ., 2004, 93, (1), pp. 107117, doi: 10.1016/j.rse.2004.06.017.
    4. 4)
      • 18. Frélicot, C., Mascarilla, L., Fruchard, A.: ‘An ambiguity measure for pattern recognition problems using triangular-norms combination’, WSEAS Trans. Syst., 2004, 8, (3), pp. 27102715.
    5. 5)
      • 9. Tuia, D., Volpi, M., Copa, L., et al: ‘A survey of active learning algorithms for supervised remote sensing image classification’, IEEE J. Sel. Top. Signal Process., 2011, 5, (3), pp. 606617, doi: 10.1109/JSTSP.2011.2139193.
    6. 6)
      • 8. Demir, B., Persello, C., Bruzzone, L.: ‘Batch-mode active-learning methods for the interactive classification of remote sensing images’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (3), pp. 10141031, doi: 10.1109/TGRS.2010.2072929.
    7. 7)
      • 17. Dubois, D., Foulloy, L., Mauris, G., et al: ‘Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities’, Reliab. Comput., 2004, 10, (4), pp. 273297, doi: 10.1023/B:REOM.0000032115.22510.b5.
    8. 8)
      • 1. Olofsson, P., Foody, G.M., Herold, M., et al: ‘Good practices for estimating area and assessing accuracy of land change’, Remote Sens. Environ., 2014, 148, pp. 4257, doi: 10.1016/j.rse.2014.02.015.
    9. 9)
      • 13. Mascarilla, L., Berthier, M., Frélicot, C.: ‘A k-order fuzzy or operator for pattern classification with k-order ambiguity rejection’, Fuzzy Sets Syst., 2008, 159, (15), pp. 20112029, doi: 10.1016/j.fss.2008.02.019.
    10. 10)
      • 12. Mitra, P., Murthy, C.A., Pal, S.K.: ‘A probabilistic active support vector learning algorithm’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (3), pp. 413418, doi: 10.1109/TPAMI.2004.1262340.
    11. 11)
      • 10. Persello, C., Boularias, A., Dalponte, M., et al: ‘Cost-sensitive active learning with lookahead: optimizing field surveys for remote sensing data classification’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (10), pp. 66526664, doi: 10.1109/TGRS.2014.2300189.
    12. 12)
      • 14. Luo, T., Kramer, K., Goldgof, D.B., et al: ‘Active learning to recognize multiple types of plankton’, J. Mach. Learn. Res., 2005, 6, pp. 589613.
    13. 13)
      • 6. Liu, A., Jun, G., Ghosh, J.: ‘A self-training approach to cost sensitive uncertainty sampling’, Mach. Learn., 2009, 76, (2–3), pp. 257270, doi: 10.1007/s10994-009-5131-9.
    14. 14)
      • 19. Wang, X.Z., Dong, L.C., Yan, J.H.: ‘Maximum ambiguity-based sample selection in fuzzy decision tree induction’, IEEE Trans. Knowl. Data Eng., 2012, 24, (8), pp. 14911505, doi: 10.1109/TKDE.2011.67.
    15. 15)
      • 5. Samat, A., Gamba, P., Du, P., et al: ‘Active extreme learning machines for quad-polarimetric SAR imagery classification’, Int. J. Appl. Earth Obs. Geoinf., 2015, 35, pp. 305319, doi: 10.1016/j.jag.2014.09.019.
    16. 16)
      • 3. Samat, A., Li, J., Liu, S., et al: ‘Improved hyperspectral image classification by active learning using pre-designed mixed pixels’, Pattern Recognit., 2016, 51, pp. 4358, doi: 10.1016/j.patcog.2015.08.019.
    17. 17)
      • 4. Tuia, D., Ratle, F., Pacifici, F., et al: ‘Active learning methods for remote sensing image classification’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (7), pp. 22182232, doi: 10.1109/TGRS.2008.2010404.
    18. 18)
      • 11. Wang, R., Chow, C.Y., Kwong, S.: ‘Ambiguity-based multiclass active learning’, IEEE Trans. Fuzzy Syst., 2015, 24, (1), pp. 242248, doi: 10.1109/TFUZZ.2015.2451698.
    19. 19)
      • 15. Brinker, K.: ‘Incorporating diversity in active learning with support vector machines’. Proc. 20th Int. Conf. on Machine Learning, Washington, DC, 2003, vol. 3, pp. 5966.
    20. 20)
      • 20. Mura, M.D., Villa, A., Benediktsson, J.A., et al: ‘Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (3), pp. 542546, doi: 10.1109/LGRS.2010.2091253.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0784
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0784
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address