Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Automated method for the detection and segmentation of drusen in colour fundus image for the diagnosis of age-related macular degeneration

Age-related macular degeneration (AMD) is one of the main reasons for visual impairment worldwide. The assessment of risk for the development of AMD requires reliable detection and quantitative mapping of retinal abnormalities that are considered as precursors of the disease. Typical signs of the latter are the so-called drusen that appear as yellowish spots in the retina. Automated detection and segmentation of drusen provide vital information about the severity of the disease. The authors propose a novel method for the detection and segmentation of drusen in colour fundus images. The method combines colour information of the object with its boundary information for the accurate detection and segmentation of drusen. To perform non-uniform illumination correction and to minimise inter-subject variability a novel colour normalisation method has been proposed. Experiments are conducted on publicly available STARE and ARIA datasets. The method achieves an overall accuracy of 96.62% which is about 4% higher than the state-of-the-art method. The sensitivity and specificity of the proposed method are 95.96 and 97.64%, respectively.

References

    1. 1)
      • 17. Bhuiyan, A., Kawasaki, R., Sasaki, M., et al: ‘Drusen detection and quantification for early identification of age related macular degeneration using color fundus imaging’, J. Clin. Exp. Ophthalmol., 2013, 4, (305), p. 2.
    2. 2)
      • 21. Chui, C.K.: ‘An introduction to wavelets’ (Elsevier, 2016).
    3. 3)
      • 8. Russ, J.C.: ‘The image processing handbook’ (CRC Press, Inc., Boca Raton, 1999, 3rd edn.).
    4. 4)
      • 11. Sung, J., Bang, S.Y., Choi, S.: ‘A Bayesian network classifier and hierarchical Gabor features for handwritten numeral recognition’, Pattern Recogn. Lett., 2006, 27, pp. 6675.
    5. 5)
      • 5. STARE dataset.: Available at: http://cecas.clemson.edu/∼ahoover/stare/, Last accessed: 20 January 2017.
    6. 6)
      • 12. Cortes, C., Vapnik, V.: ‘Support-vector networks’, Mach. Learn., 1995, 20, (3), pp. 273297.
    7. 7)
      • 27. Mookiah, M.R.K., Acharya, U.R, Koh, J.E.W., et al: ‘Decision support system for age-related macular degeneration using discrete wavelet transform’, Med. Biol. Eng. Comput., 2014, 52, (9), pp. 781796.
    8. 8)
      • 2. Mittal, D., Kumari, K: ‘Automated detection and segmentation of drusen in retinal fundus images’, Comput. Electr. Eng., 2015, 47, pp. 8295.
    9. 9)
      • 33. Kaggle dataset for diabetic retinopathy detection: Available at: https://www.kaggle.com/c/diabetic-retinopathy-detection/data, Last accessed: 20 January 2017.
    10. 10)
      • 15. Wong, D.W.K., Liu, J., Cheng, X., et al: ‘THALIA-An automatic hierarchical analysis system to detect drusen lesion images for AMD assessment’. 10th Int. Symp. on Biomedical Imaging (ISBI), 2013, pp. 884887.
    11. 11)
      • 6. ARIA dataset.: Available at: http://www.eyecharity.com/aria_online, Last accessed: August 24 2014.
    12. 12)
      • 16. Forgey, E.: Cluster analysis of multivariate data: efficiency vs. Interpretability of classification’, Biometrics, 1965, 21, (3), pp. 768769.
    13. 13)
      • 9. Mora, A.D., Vieira, P.M., Manivannan, A., et al: ‘Automated drusen detection in retinal images using analytical modelling algorithms’, Biomed. Eng. Online, 2011, 10, (1), p. 59.
    14. 14)
      • 34. Park, M., Jin, J.S., Luo, S.: ‘Locating the optic disc in retinal images’. Int. Conf. on Computer Graphics, Imaging and Visualisation, 2006, pp. 141145.
    15. 15)
      • 37. Soille, P.: ‘Morphological image analysis: principles and applications’ (Springer Science & Business Media, Berlin, 2003, 2nd edn.).
    16. 16)
      • 18. Sande, V.D., Koen, T.G, Snoek, C.: ‘Evaluating color descriptors for object and scene recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 15821596.
    17. 17)
      • 24. Grinsven, V., Mark, J.J.P., Lechanteur, Y.T.E., et al: ‘Automatic drusen quantification and risk assessment of age-related macular degeneration on color fundus images automatic drusen quantification on color fundus images’, Invest. Ophthalmol. Vis. Sci., 2013, 54, (4), pp. 30193027.
    18. 18)
      • 25. Kumari, K., Mittal, D.: ‘Automated drusen detection technique for age-related macular degeneration’, J. Biomed. Eng. Med. Imaging, 2015, 2, (1), p. 18.
    19. 19)
      • 20. Mookiah, M.R.K., Acharya, U.R., Koh, J.E.W., et al: ‘Automated diagnosis of age-related macular degeneration using greyscale features from digital fundus images’, Comput. Biol. Med., 2014, 53, pp. 5564.
    20. 20)
      • 22. Prasath, A.R., Ramya, M.M.: ‘Detection of macular drusen based on texture descriptors’, Res. J. Inf. Technol., 2015, 7, (1), pp. 7079.
    21. 21)
      • 3. Phan, T.V., Seoud, L., Chakor, H., et al: ‘Automatic screening and grading of age-related macular degeneration from texture analysis of fundus images’, J. Ophthalmology, 2016, 2016, pp. 111doi:10.1155/2016/5893601.
    22. 22)
      • 31. Baldevbhai, P.J., Anand, R.S.: ‘Color image segmentation for medical images using L*a*b* color space’, IOSR J. Electron. Commun. Eng., 2012, 1, (2), pp. 2445.
    23. 23)
      • 13. Raza, G., Rafique, M., Tariq, A., et al: ‘Hybrid classifier based drusen detection in colored fundus images’. IEEE Jordan Conf. on Applied Electrical Engineering and Computing Technologies (AEECT), 2013, pp. 15.
    24. 24)
      • 1. https://nei.nih.gov/health/maculardegen/armd_facts, Last accessed: 20 January 2017.
    25. 25)
      • 7. Remeseiro, B., Barreira, N., Calvo, D., et al: ‘Automatic drusen detection from digital retinal images: AMD prevention’, Comput. Aided Syst. Theory-EUROCAST, 2009, 2009, pp. 187194.
    26. 26)
      • 14. Zheng, Y., Vanderbeek, B., Daniel, E., et al: ‘An automated drusen detection system for classifying age-related macular degeneration with color fundus photographs’. 10th Int. Symp. on Biomedical Imaging (ISBI), 2013, pp. 14481451.
    27. 27)
      • 32. Moreno, A., Fernando, B., Kani, B., et al: ‘Color correction: a novel weighted Von Kries model based on memory colors’, Proc. Int. Workshop on Computational Color Imaging, Milan, Italy, April 2011, pp. 165175(LNCS, 6626).
    28. 28)
      • 19. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson Prentice Hall, 2008, 3rd edn.).
    29. 29)
      • 10. Akram, M.U., Mujtaba, S., Tariq, A.: ‘Automated drusen segmentation in fundus images for diagnosing age related macular degeneration’. Int. Conf. on Electronics, Computer and Computation (ICECCO), 2013, pp. 1720.
    30. 30)
      • 35. Saha, S.K., Xiao, D., Frost, S., et al: ‘A two-step approach for longitudinal registration of retinal images’, J. Med. Syst., 2016, 40, (12), p. 277.
    31. 31)
      • 36. Nguyen, U.T.V., Bhuiyan, A., Park, L.A.F., et al: ‘An effective retinal blood vessel segmentation method using multi-scale line detection’, Pattern Recognit., 2013, 46, (3), pp. 703715.
    32. 32)
      • 29. Saha, S.K., Xiao, D., Fernando, B., et al: ‘Deep learning based decision support system for automated diagnosis of age-related macular degeneration (AMD)’, Invest. Ophthalmol. Vis. Sci., 2017, 58, (8), p. 25.
    33. 33)
      • 23. Haralick, R.M., Shanmugam, K.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, 3, (6), pp. 610621.
    34. 34)
      • 30. Fairchild, M.D.: ‘Color appearance models’ (John Wiley & Sons, Chichester, 2005, 2nd edn.).
    35. 35)
      • 4. Mookiah, M.R.K., Acharya, U.R., Chua, K., et al: ‘Computer-aided diagnosis of diabetic retinopathy: a review’, Comput. Biol. Med., 2013, 43, (12), pp. 21362155.
    36. 36)
      • 26. Sundaresan, V., Ram, K., Selvaraj, K., et al: ‘Adaptive super-candidate based approach for detection and classification of drusen on retinal fundus images’. Proc. Ophthalmic Medical Image Analysis Second Int. Workshop, OMIA 2015, Munich, Germany, pp. 8188, available at: http://ir.uiowa.edu/omia/2015_Proceedings/2015/11.
    37. 37)
      • 28. Saha, S.K., Xiao, D., Kanagasingam, Y.: ‘A novel method for correcting non-uniform/poor illumination of color fundus photographs’, J. Digit. Imaging, 2017, pp. 19.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0685
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0685
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address