http://iet.metastore.ingenta.com
1887

HWFusion: Holoentropy and SP-Whale optimisation-based fusion model for magnetic resonance imaging multimodal image fusion

HWFusion: Holoentropy and SP-Whale optimisation-based fusion model for magnetic resonance imaging multimodal image fusion

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Image fusion is becoming a promising technique for obtaining a more informative image by combining various source images captured by multimodal imaging systems. The technique finds application in several fields, such as medical imaging, material analysis, satellite imaging, including defence and civilian sectors. This study presents a model, named holoentropy-whale fusion (HWFusion), for the image fusion. Two different multimodal images from magnetic resonance imaging (T1, T1C, T2, FLAIR) are fed into the wavelet transform to convert the images into four subbands. The wavelet coefficients are then fused using a weighted coefficient that utilises two factors, entropy and whale fusion factor, which are calculated using holoentropy and the proposed SP-Whale optimiser, respectively. SP-Whale is an algorithm designed by modifying whale optimisation algorithm with self-adaptive learning particle swarm optimisation and is used for the optimal selection of whale fusion factor. Inverse wavelet transform converts the fused wavelet coefficients obtained by the averaging of fusion factors into fused image. In a comparative analysis, the performance of HWFusion is compared with that of four existing techniques using, mutual information, peak signal-to-noise ratio, and root mean-squared error (RMSE), where it could attain mutual information of 1.8015, RMSE of 1.1701, and peak signal-to-noise ratio of 40.6575.

References

    1. 1)
      • 1. Deng, A., Wu, J., Yang, S.: ‘An image fusion algorithm based on discrete wavelet transform and canny operator’, Adv. Res. Comput. Educ., Simul., Model., 2011, 175, pp. 3238.
    2. 2)
      • 2. Bhateja, V., Patel, H., Krishn, A., et al: ‘Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains’, IEEE Sens. J., 2015, 15, (12), pp. 67836790.
    3. 3)
      • 3. Li, X., He, M., Roux, M.: ‘Multifocus image fusion based on redundant wavelet transform’, IET Image Process., 2010, 4, (4), pp. 283293.
    4. 4)
      • 4. Rodrigues, D., Virani, H.A., Kutty, S.: ‘Multimodal image fusion techniques for medical images using wavelets’, Int. J. Res. Advent Technol., 2014, 2, (3), pp. 310313.
    5. 5)
      • 5. Nikolov, S., Hill, P., Bull, D., et al: ‘Wavelets for image fusion’, Wavelets Signal Image Anal., 2001, 19, pp. 213241.
    6. 6)
      • 6. Cheng, J., Liu, H., Liu, T., et al: ‘Remote sensing image fusion via wavelet transform and sparse representation’, ISPRS J. Photogramm. Remote Sens., 2015, 104, pp. 158173.
    7. 7)
      • 7. Rahman, S.M.M., Ahmad, M.O., Swamy, M.N.S.: ‘Contrast-based fusion of noisy images using discrete wavelet transform’, IET Image Process., 2010, 4, (5), pp. 374384.
    8. 8)
      • 8. Chander, S., Vijaya, P., Dhyani, P.: ‘DOFL: Kernel based directive operative fractional lion optimisation algorithm for data clustering’, Int. Rev. Comput. Softw. (IRECOS), 2016, 11, (8), pp. 701714.
    9. 9)
      • 9. George, A., Rajakumar, B.R.: ‘Fuzzy aided ant colony optimization algorithm to solve optimization problem’, in Abraham, A., Thampi, S. (Eds.): ‘Intelligent informatics’ (Springer, Berlin, Heidelberg, 2013), pp. 207215.
    10. 10)
      • 10. Chander, S., Vijaya, P., Dhyani, P.: ‘MKF-firefly: hybridization of firefly and multiple kernel-based fuzzy C-means algorithm’, Int. J. Adv. Res. Comput. Commun. Eng., 2016, 5, (7), pp. 213216.
    11. 11)
      • 11. Daniel, E., Anitha, J., Kamaleshwaran, K.K., et al: ‘Optimum spectrum mask based medical image fusion using gray wolf optimization’, Biomed. Signal Process. Control, 2017, 34, pp. 3643.
    12. 12)
      • 12. Kavitha, S., Thyagharajan, K.K.: ‘Efficient DWT-based fusion techniques using genetic algorithm for optimal parameter estimation’, J. Softw. Comput., 2017, 21, (12), pp. 33073316.
    13. 13)
      • 13. Bhavana, V., Krishnappa, H.K.: ‘Multi-modality medical image fusion using discrete wavelet transform’. Proc. 4th Int. Conf. Eco-friendly Computing and Communication Systems, 2015, 70, pp. 625631.
    14. 14)
      • 14. Vijayarajan, R.: ‘Discrete wavelet transform based principal component averaging fusion for medical images’, Int. J. Electron. Commun., 2015, 69, (6), pp. 896902.
    15. 15)
      • 15. Lu, H., Zhang, L., Serikawa, S.: ‘Maximum local energy: an effective approach for multisensor image fusion in beyond wavelet transform domain’, Comput. Math. Appl., 2012, 64, (5), pp. 9961003.
    16. 16)
      • 16. Bhatnagar, G., Wu, Q.M.J., Liu, Z.: ‘Directive contrast based multimodal medical image fusion in NSCT domain’, IEEE Trans. Multimedia, 2013, 15, (5), pp. 10141024.
    17. 17)
      • 17. Manchanda, M., Sharma, R.: ‘A novel method of multimodal medical image fusion using fuzzy transform’, J. Vis. Commun. Image Represent., 2016, 40, pp. 197217, Part A.
    18. 18)
      • 18. Xu, X., Shan, D., Wang, G., et al: ‘Multimodal medical image fusion using PCNN optimized by the QPSO algorithm’, Appl. Soft Comput., 2016, 46, pp. 588595.
    19. 19)
      • 19. Raghavendra, R., Dorizzi, B., Rao, A., et al: ‘Particle swarm optimization based fusion of near infrared and visible images for improved face verification’, Pattern Recognit., 2011, 44, (2), pp. 401411.
    20. 20)
      • 20. Zahraa, F.E., Gamal, A.E., Elmogy, M., et al: ‘Current trends in medical image registration and fusion’, Egypt. Inf. J., 2016, 17, (1), pp. 99124.
    21. 21)
      • 21. Binu, D., George, A.: ‘KF-PSO: Hybridization of particle swarm optimization and kernel-based fuzzy C means algorithm’. 2013 Int. Conf. Advances in Computing, Communications and Informatics (ICACCI), 2013, pp. 512515.
    22. 22)
      • 22. Wu, S., Wang, S.: ‘Information-theoretic outlier detection for large-scale categorical data’, IEEE Trans. Knowl. Data Eng., 2013, 25, (3), pp. 589602.
    23. 23)
      • 23. Mirjalili, S., Lewis, A.: ‘The whale optimization algorithm’, Adv. Eng. Softw., 2016, 95, pp. 5167.
    24. 24)
      • 24. Wang, Y., Li, B., Weise, T., et al: ‘Self-adaptive learning based particle swarm optimization’, Inf. Sci., 2011, 181, (20), pp. 45154538.
    25. 25)
      • 25. Zhao, J., Cui, G., Gong, X., et al: ‘Fusion of visible and infrared images using global entropy and gradient constrained regularization’, Infrared Phys. Technol., 2017, 81, pp. 201209.
    26. 26)
      • 26. Mane, M.V., Jadhav, D.V.: ‘Holoentropy enabled-decision tree for automatic classification of diabetic retinopathy using retinal fundus images’, Biomed. Eng./Biomed. Tech., 2017, 62, (3), pp. 321332.
    27. 27)
      • 27. BRATS, 2015, https://www.smir.ch/BRATS/Start, accessed May 2016.
    28. 28)
      • 28. Nikhilesh, N.G., Ashish, H.K., Prajesh, V.K.: ‘Analysis of CT and MRI image fusion using non-subsampled transform and wavelet transform’, Int. J. Eng. Sci. Comput., 2016, 6, (5), pp. 47744777.
    29. 29)
      • 29. Sale, D., Sonare, P., Joshi, M.A.: ‘PCA based image fusion for multispectral palm enhancement’, Int. J. Adv. Res. Electr. Electron. Instrum. Eng., 2014, 3, (2), pp. 75017508.
    30. 30)
      • 30. Siva Kumar, B., Nagaraj, S.: ‘Discrete and stationary wavelet decomposition for image resolution enhancement’, Int. J. Eng. Trends Technol. (IJETT), 2013, 4, (7), pp. 28862889.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0573
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0573
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address