http://iet.metastore.ingenta.com
1887

Saliency enabled compression in JPEG framework

Saliency enabled compression in JPEG framework

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Under low bit-rate requirements, JPEG baseline causes compression artifacts in the image. Through this paper, a novel region-of-interest (ROI) dependent quantization method in JPEG framework is proposed. The proposed method judiciously quantizes DCT coefficients belonging to salient and non-salient regions of the image. In this work, multiple ROIs are optimally identified and ranked by using variances. The number of classes is adaptively calculated using goodness-of-segmentation. After the number of classes and their ranks are obtained, the image is divided into blocks of size . These blocks may belong to more than one class and hence these are ranked based on their membership in various classes. 2D-DCT coefficients of each block are obtained and then quantized adaptively based on their ranks. Overhead for rank information of blocks is minimized by applying delta-encoding. Results are analyzed in terms of objective quality parameters and visual perception and found that the blocking artifacts in the proposed method are significantly lower than JPEG. The efficiency of the proposed method is demonstrated by results of recently published similar methods and the former is found superior in terms of quality of the reconstructed image.

References

    1. 1)
      • 1. Sayood, K.: ‘Introduction to data compression’ (Elsevier, Amsterdam, 2005, 3rd edn.).
    2. 2)
      • 2. Weinberger, M.J., Seroussi, G., Sapiro, G.: ‘The loco-i lossless image compression algorithm: principles and standardization into jpeg-ls’, IEEE Trans. Image Process., 2000, 9, (8), pp. 13091324.
    3. 3)
      • 3. Wang, Z., Simon, S., Baroud, Y., et al: ‘Visually lossless image compression extension for jpeg based on just-noticeable distortion evaluation’. In: Systems, Signals and Image Processing (IWSSIP), 2015 Int. Conf. on IEEE, 2015, pp. 237240.
    4. 4)
      • 4. Kurita, T., Otsu, N.: ‘A method of block truncation coding for color image compression’, IEEE Trans. Commun., 1993, 41, (9), pp. 12701274.
    5. 5)
      • 5. Yang, C.K., Lin, J.C., Tsai, W.H.: ‘Color image compression by momentpreserving and block truncation coding techniques’. In: Image Processing, 1994. Proc. ICIP-94., IEEE Int. Conf., 1994, vol. 3, pp. 972976.
    6. 6)
      • 6. Dhara, B.C., Chanda, B.: ‘Color image compression based on block truncation coding using pattern fitting principle’, Pattern Recognit., 2007, 40, (9), pp. 24082417.
    7. 7)
      • 7. Feng, Y., Nasrabadi, N.: ‘Dynamic address-vector quantisation of rgb colour images’, IEE Proc. I, Commun. Speech Vis., 1991, 138, (4), pp. 225231.
    8. 8)
      • 8. Lee, W.F., Chan, C.K.: ‘Dynamic finite state vq of colour images using stochastic learning’, Signal Process., Image Commun., 1994, 6, (1), pp. 111.
    9. 9)
      • 9. Abadpour, A., Kasaei, S.: ‘Color pca eigenimages and their application to compression and watermarking’, Image Vis. Comput., 2008, 26, (7), pp. 878890.
    10. 10)
      • 10. Wallace, G.K.: ‘The jpeg still picture compression standard’, IEEE Trans. Consum. Electron., 1992, 38, (1), pp. xviiixxxiv.
    11. 11)
      • 11. Douak, F., Benzid, R., Benoudjit, N.: ‘Color image compression algorithm based on the dct transform combined to an adaptive block scanning’, AEU-Int. J. Electron. Commun., 2011, 65, (1), pp. 1626.
    12. 12)
      • 12. Messaoudi, A., Srairi, K.: ‘Colour image compression algorithm based on the dct transform using difference lookup table’, Electron. Lett., 2016, 52, (20), pp. 16851686.
    13. 13)
      • 13. Skodras, A., Christopoulos, C., Ebrahimi, T.: ‘The jpeg 2000 still image compression standard’, IEEE Signal Process. Mag., 2001, 18, (5), pp. 3658.
    14. 14)
      • 14. Boucetta, A., Melkemi, K.: ‘Dwt based-approach for color image compression using genetic algorithm’, Image and Signal Processing, 2012, pp. 476484.
    15. 15)
      • 15. Barua, S., Mitra, K., Veeraraghavan, A.: ‘Saliency guided wavelet compression for low-bitrate image and video coding’. In: 2015 IEEE Global Conf. on Signal and Information Processing (GlobalSIP IEEE, 2015, pp. 11851189.
    16. 16)
      • 16. Xiong, Z., Ramchandran, K., Orchard, M.T., et al: ‘A comparative study of dct-and wavelet-based image coding’, IEEE Trans. Circuits Syst. Video Technol., 1999, 9, (5), pp. 692695.
    17. 17)
      • 17. Sullivan, G.J., Ohm, J., Han, W.J., et al: ‘Overview of the high efficiency video coding (hevc) standard’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 16491668.
    18. 18)
      • 18. Yang, J., Zhu, G., Shi, Y.Q.: ‘Analyzing the effect of jpeg compression on local variance of image intensity’, IEEE Trans. Image Process., 2016, 25, (6), pp. 26472656.
    19. 19)
      • 19. Lam, E.Y., Goodman, J.W.: ‘A mathematical analysis of the dct coefficient distributions for images’, IEEE Trans. Image Process., 2000, 9, (10), pp. 16611666.
    20. 20)
      • 20. Borji, A., Itti, L.: ‘State-of-the-art in visual attention modeling’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (1), pp. 185207.
    21. 21)
      • 21. Xia, Q., Li, X., Zhuo, L., et al: ‘Visual sensitivity-based low-bit-rate image compression algorithm’, IET Image Process., 2012, 6, (7), pp. 910918.
    22. 22)
      • 22. Yang, H., Long, M., Tai, H.M.: ‘Region-of-interest image coding based on ebcot’, IEE Proc., Vis. Image Signal Process., 2005, 152, (5), pp. 590596.
    23. 23)
      • 23. Kaur, L., Chauhan, R., Saxena, S.: ‘Adaptive compression of medical ultrasound images’, IEE Proc., Vis. Image Signal Process., 2006, 153, (2), pp. 185190.
    24. 24)
      • 24. Hadizadeh, H., Bajic, I.V.: ‘Saliency-aware video compression’, IEEE Trans. Image Process., 2014, 23, (1), pp. 1933.
    25. 25)
      • 25. Guo, C., Zhang, L.: ‘A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression’, IEEE Trans. Image Process., 2010, 19, (1), pp. 185198.
    26. 26)
      • 26. Christopoulos, C., Askelof, J., Larsson, M.: ‘Efficient methods for encoding regions of interest in the upcoming jpeg2000 still image coding standard’, IEEE Signal Process. Lett., 2000, 7, (9), pp. 247249.
    27. 27)
      • 27. Bruckstein, A.M., Elad, M., Kimmel, R.: ‘Down-scaling for better transform compression’, IEEE Trans. Image Process., 2003, 12, (9), pp. 11321144.
    28. 28)
      • 28. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE transactions on systems, man, and cybernetics, 1979, 9, (1), pp. 6266.
    29. 29)
      • 29. Huang, D.Y., Wang, C.H.: ‘Optimal multi-level thresholding using a two-stage otsu optimization approach’, Pattern Recognit. Lett., 2009, 30, (3), pp. 275284.
    30. 30)
      • 30. Schindler, H.: ‘Delta modulation’, IEEE Spectr., 1970, 7, (10), pp. 6978.
    31. 31)
      • 31. Lagarias, J.C., Reeds, J.A., Wright, M.H., et al: ‘Convergence properties of the nelder–mead simplex method in low dimensions’, SIAM J. Optim., 1998, 9, (1), pp. 112147.
    32. 32)
      • 32. Weber, A.G.: ‘The usc-sipi image database version 5’, USC-SIPI Report, 1997, 315, pp. 124.
    33. 33)
      • 33. Wang, Z., Bovik, A.C.: ‘Image and multidimensional signal processing-a universal image quality index’, IEEE Signal Process. Lett., 2002, 9, (3), pp. 8184.
    34. 34)
      • 34. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0554
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0554
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address