access icon free Image smoothing via truncated gradient regularisation

Edge-preserving image smoothing aims at maintaining the fundamental constituents, i.e. salient edges of a given image, while removing the noise and insignificant details in the meantime. It is often employed at the pre-processing step of many image processing tasks, including reconstruction, segmentation, recognition and three-dimensional content generation, to name just a few. Recently, a sparse gradient counting scheme in an optimisation framework has attracted much attention, and it confines the discrete number of intensity changes among neighbouring pixels. This -regularised sparsity pursuit scheme performs favourably in a global optimisation manner. However, it often achieves unsatisfactory performance at diminishing trivial details and at smoothing discrete regions. In this study, a new image smoothing scheme with truncated regularisation is proposed, which is especially effective for sharpening critical edges. For objective evaluation of the smoothing performance, images are linearly quantised into several layers to generate the experimental images, then these quantised images are smoothed using several methods for reconstructing the smoothly changed shape and intensity of the original images. Compared with the smoothing scheme, extensive experimental results demonstrate that the proposed method performs much better at preserving main structures and removing trivial details.

Inspec keywords: edge detection; image reconstruction; gradient methods; image recognition; image segmentation

Other keywords: edge preserving image smoothing; gradient regularisation; image reconstruction; image segmentation; image recognition; sparse gradient counting scheme; salient edges; noise removal; image smoothing

Subjects: Optimisation techniques; Computer vision and image processing techniques; Optical, image and video signal processing; Optimisation techniques

References

    1. 1)
      • 2. Geman, D., Yang, C.: ‘Nonlinear image recovery with half-quadratic regularization’, IEEE Trans. Image Process., 1995, 4, pp. 932946.
    2. 2)
      • 14. Perona, P., Malik, J.: ‘Scale-space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (7), pp. 629639.
    3. 3)
      • 11. He, K., Sun, J., Tang, X.: ‘Guided image filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (6), pp. 13971409.
    4. 4)
      • 33. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    5. 5)
      • 32. Moon, T.K.: ‘Mathematical methods and algorithms for signal processing’ (Prentice hall, 2009).
    6. 6)
      • 29. He, L., Wang, Y., Xiang, Z.: ‘Support driven wavelet frame-based image deblurring’. Available at http://arxiv.org/abs/1603.08108.
    7. 7)
      • 25. Rudin, L., Osher, S., Fatemi, E.: ‘Nonlinear total variation based noise removal algorithms’, Phys. D, 1992, 60, pp. 259268.
    8. 8)
      • 19. Cheng, X., Zeng, M., Liu, X.: ‘Feature-preserving filtering with L0 gradient minimization’, Comput. Graph., 2014, 38, pp. 150157.
    9. 9)
      • 6. Durand, F., Dorsey, J.: ‘Fast bilateral filtering for the display of high-dynamic-range images’, ACM Trans. Graph., 2002, 21, (3), pp. 257266.
    10. 10)
      • 18. Pang, X., Zhang, S., Gu, J., et al: ‘Improved L0 gradient minimization with L1 fidelity for image smoothing’, PloS One, 2015, 10, (9), p. e0138682.
    11. 11)
      • 10. He, K., Sun, J., Tang, X.: ‘Guided image filtering’. Proc. of IEEE European Conf. on Computer Vision, 2010, pp. 114.
    12. 12)
      • 24. Bao, L., Song, Y., Yang, Q., et al: ‘Tree filtering: efficient structure-preserving smoothing with a minimum spanning tree’, IEEE Trans. Image Process., 2014, 23, (2), pp. 555569.
    13. 13)
      • 30. Natarajan, B.K.: ‘Sparse approximate solutions to linear systems’, SIAM J. Comput., 1995, 24, (2), pp. 227234.
    14. 14)
      • 20. Nguyen, R.M.H., Brown, M.S.: ‘Fast and effective L0 gradient minimization by region fusion’. Proc. of the IEEE Int. Conf. on Computer Vision, 2015, pp. 208216.
    15. 15)
      • 3. Luo, Y., Marhoon, M., Dossary, S., et al: ‘Edge-preserving smoothing and applications’, Leading Edge, 2002, 21, (2), pp. 136158.
    16. 16)
      • 4. Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. Proc. of IEEE Int. Conf. on Computer Vision, 1988, pp. 839846.
    17. 17)
      • 26. Wang, Y., Yang, J., Yin, W., et al: ‘A New alternating minimization algorithm for total variation image reconstruction’, SIAM J. Imaging Sci., 2008, 1, (3), pp. 248272.
    18. 18)
      • 28. Duan, Y., Chang, H., Huang, W., et al: ‘Simultaneous bias correction and image segmentation via L0 regularized Mumford-Shah model’. Proc. IEEE Int. Conf. on Image Processing, 2014, pp. 610.
    19. 19)
      • 16. Xu, L., Yan, Q., Xia, Y., et al: ‘Structure extraction from texture via relative total variation’, ACM Trans. Graph., 2012, 31, (6), p. 139.
    20. 20)
      • 5. Chen, J., Paris, S., Durand, F.: ‘Real-time edgeaware image processing with the bilateral grid’, ACM Trans. Graph., 2007, 26, (3), p. 103.
    21. 21)
      • 21. Cho, C., Lee, S.: ‘Effective five directional partial derivatives-based image smoothing and a parallel structure design’, IEEE Trans. Image Process., 2016, 25, (4), pp. 16171625.
    22. 22)
      • 17. Xu, L., Lu, C., Xu, Y., et al: ‘Image smoothing via L0 gradient minimization’, ACM Trans. Graph., 2011, 30, (6), pp. 174:1174:12.
    23. 23)
      • 1. Nagao, M., Matsuyama, T.: ‘Edge preserving smoothing’, Comput. Graph. Image Process., 1979, 9, (4), pp. 394407.
    24. 24)
      • 15. Farbman, Z., Fattal, R., Lischinski, D., et al: ‘Edge-preserving decompositions for multi-scale tone and detail manipulation’, ACM Trans. Graph., 2008, 27, (3), p. 67.
    25. 25)
      • 9. Yang, Q., Tan, K.-H., Ahuja, N.: ‘Real-time O (1) bilateral filtering’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, 2009, pp. 557564.
    26. 26)
      • 13. Black, N.J., Sapiro, C., Marimont, D.H., et al: ‘Robust anisotropic diffusion’, IEEE Trans. Image Process., 1998, 7, (3), pp. 421432.
    27. 27)
      • 23. Aubert, G., Kornprobst, P.: ‘Mathematical problems in image processing: partial differential equations and the calculus of variations’ (Springer-Verlag, 2006, 2nd edn.).
    28. 28)
      • 8. Yang, Q.: ‘Recursive bilateral filtering’. Proc. of IEEE European Conf. on Computer Vision, 2012, pp. 399413.
    29. 29)
      • 12. Zhang, Q., Shen, X., Xu, L., et al: ‘Rolling guidance filter’. Proc. of IEEE European Conf. on Computer Vision, 2014, pp. 815830.
    30. 30)
      • 22. Liu, C., Szeliski, R., Kang, S.B., et al: ‘Automatic estimation and removal of noise from a single image’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (2), pp. 299314.
    31. 31)
      • 31. Wang, Y., Yin, W.: ‘Sparse signal reconstruction via iteration support detection’, SIAM J. Imaging Sci., 2010, 3, (3), pp. 462491.
    32. 32)
      • 7. Paris, S., Durand, F.: ‘A fast approximation of the bilateral filter using a signal processing approach’. Proc. of IEEE European Conf. on Computer Vision, 2006, pp. 568580.
    33. 33)
      • 27. Zhang, T.: ‘Analysis of multi-stage convex relaxation for sparse regularization’, J. Mach. Learn. Res., 2010, 11, pp. 10811107.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0533
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0533
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading