http://iet.metastore.ingenta.com
1887

Adaptive active contours based on variable kernel with constant initialisation

Adaptive active contours based on variable kernel with constant initialisation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper, a novel method of active contours based on the formulation of partial differential equation (PDE) is proposed for image segmentation. The evolution equation incorporates a force term that pushes the contour towards object boundary, a regularisation term which takes into account the smoothness of the level set function and an edge term which helps to stop the contour at required boundaries. The proposed method integrates an image convolved by a variable kernel into an energy formulation, where the width of the kernel varies in each iteration. Therefore, it takes local region information when the width of the kernel is small while for the larger width of the kernel, the proposed method considers global region information across the regions. Due to the use of both local and global image information, the method easily detects objects in the complex background and also segments the objects where intensity changes within the object. Moreover, the proposed method totally eliminates the need of the contour initialisation by using constant initialisation scheme. Experimental results on real and medical images prove the robustness of the proposed method. Finally, the authors validate their method on PH2 database for skin lesion segmentation.

References

    1. 1)
      • 1. Osher, S., Sethian, J.A.: ‘Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations’, J. Comput. Phys., 1988, 79, (1), pp. 1249.
    2. 2)
      • 2. Kass, M., Witkin, A., Terzopoulos, D.: ‘Snakes: active contour models’, Int. J. Comput. Vis., 1988, 1, (4), pp. 321331.
    3. 3)
      • 3. Hussain, S., Chun, Q., Asif, M.R., et al: ‘Active contours for image segmentation using complex domain-based approach’, IET Image Process., 2016, 10, (2), pp. 121129.
    4. 4)
      • 4. Goldenberg, R., Kimmel, R.: ‘Fast geodesic active contours’, IEEE Trans. Image Process., 2001, 10, (10), pp. 14671475.
    5. 5)
      • 5. Caselles, V., Catte, F., Coll, T., et al: ‘A geometric model for active contours in image processing’, Numer. Math., 1993, 66, (1), pp. 131.
    6. 6)
      • 6. Chunming, L., Chenyang, X., Changfeng, G., et al: ‘Level Set evolution without Re-initialization: A New variational formulation’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, June 2005, vol. 1, pp. 430436.
    7. 7)
      • 7. Zhao, P., Ren, H.E., Pu, Z.B.: ‘Simultaneous surface area measurement for multiple objects by geodesic active contour’, Optik – Int. J. Light Electron Optics, 2009, 120, (10), pp. 484489.
    8. 8)
      • 8. Chunming, L., Chenyang, X., Changfeng, G., et al: ‘Distance regularized level set evolution and its application to image segmentation’, IEEE Trans. Image Process., 2010, 19, (12), pp. 32433254.
    9. 9)
      • 9. Caselles, V., Kimmel, R., Sapiro, G.: ‘Geodesic active contours’, Int. J. Comput. Vis., 1997, 22, (1), pp. 6179.
    10. 10)
      • 10. Kim, J.H., Park, B.Y., Akram, F., et al: ‘Multipass active contours for an adaptive contour map’, Sensors, 2013, 13, (3), pp. 37243738.
    11. 11)
      • 11. Chan, T.F., Vese, L.A.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, (2), pp. 266277.
    12. 12)
      • 12. Li, C., Kao, C.Y., Gore, J.C., et al: ‘Minimization of region-scalable fitting energy for image segmentation’, IEEE Trans. Image Process., 2008, 17, (10), pp. 19401949.
    13. 13)
      • 13. Wang, L., Li, C., Sun, Q., et al: ‘Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation’, Comput. Med. Imaging Graph., 2009, 33, (7), pp. 520531.
    14. 14)
      • 14. Vese, L.A., Chan, T.F.: ‘A multiphase level set framework for image segmentation using the Mumford and Shah model’, Int. J. Comput. Vis., 2002, 50, (3), pp. 271293.
    15. 15)
      • 15. Zhang, K., Zhang, L., Song, H., et al: ‘Active contours with selective local or global segmentation: A new formulation and level set method’, Image Vis. Comput., 2010, 28, (4), pp. 668676.
    16. 16)
      • 16. Lankton, S., Tannenbaum, A.: ‘Localizing region-based active contours’, IEEE Trans. Image Process., 2008, 17, (11), pp. 20292039.
    17. 17)
      • 17. Peng, Y., Liu, F., Liu, S.: ‘Active contours driven by normalized local image fitting energy’, Concurrency Comput. Pract. Exp., 2014, 26, (5), pp. 12001214.
    18. 18)
      • 18. Wang, H., Huang, T.Z.: ‘Region-based object and background extraction via active contours’, Optik – Int. J. Light and Electron Optics, 2013, 124, (23), pp. 60206026.
    19. 19)
      • 19. Jiang, X., Li, B., Wang, Q., et al: ‘A novel active contour model driven by local and global intensity fitting energies’, Optik – Int. J. Light and Electron Optics, 2014, 125, (21), pp. 64456449.
    20. 20)
      • 20. Soomro, S., Akram, F., Kim, J.H., et al: ‘Active contours using additive local and global intensity fitting models for intensity inhomogeneous image segmentation’, Comput. Math. Methods Med., 2016, 2016, pp. 115.
    21. 21)
      • 21. El-Rewaidy, H., Ibrahim, E.S., Fahmy, A.S.: ‘Segmentation of the right ventricle in MRI images using a dual active shape model’, IET Image Process., 2016, 10, (10), pp. 717723.
    22. 22)
      • 22. Mumford, D., Shah, J.: ‘Optimal approximations by piecewise smooth functions and associated variational problems’, Commun. Pure Appl. Math., 1989, 42, (5), pp. 577685.
    23. 23)
      • 23. Wang, Y., He, C.: ‘Adaptive level set evolution starting with a constant function’. Appl. Math. Model., 2012, 36, (7), pp. 32173228.
    24. 24)
      • 24. Wen, W.: ‘Adaptive active contours based on local and global intensity information for image segmentation’, Optik-Int. J. Light and Electron Optics, 2014, 125, (23), pp. 69957001.
    25. 25)
      • 25. Akram, F., Garcia, M.A., Puig, D.: ‘Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity’, PloS one, 2017, 12, (4), pp. 134.
    26. 26)
      • 26. Zhang, L., Peng, X., Li, G., et al: ‘A novel active contour model for image segmentation using local and global region-based information’, Mach. Vis. Appl., 2017, 28, (1-2), pp. 7589.
    27. 27)
      • 27. Soomro, S., Akram, F., Munir, A., et al: ‘Segmentation of left and right ventricles in cardiac MRI using active contours’, Comput. Math. Methods Med., 2017, 2017, pp. 116.
    28. 28)
      • 28. Aubert, G., Kornprobst, P.: ‘Mathematical problems in image processing: partial differential equations and the calculus of variations’ (Springer-Verlag, New York, 2006, 2nd edn.), 147.
    29. 29)
      • 29. Yao, T., Wang, Z., Xie, Z., et al: ‘A multiview joint sparse representation with discriminative dictionary for melanoma detection’. Int. Conf. on Digital Image Computing: Techniques and Applications (DICTA), November 2016, pp. 16.
    30. 30)
      • 30. Barata, C., Ruela, M., Francisco, M., et al: ‘Two systems for the detection of melanomas in dermoscopy images using texture and color features’, IEEE Syst. J., 2014, 8, (3), pp. 965979.
    31. 31)
      • 31. Riaz, F., Hassan, A., Javed, M.Y., et al: ‘Detecting melanoma in dermoscopy images using scale adaptive local binary patterns’. 36th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, August 2014, pp. 67586761.
    32. 32)
      • 32. Barata, C., Celebi, M.E., Marques, J.S.: ‘Melanoma detection algorithm based on feature fusion’. 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), August 2015, pp. 26532656.
    33. 33)
      • 33. Mendonça, T., Ferreira, P.M., Marques, J.S., et al: ‘PH 2-A dermoscopic image database for research and benchmarking’. 35th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), July 2013, pp. 54375440.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0481
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0481
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address