http://iet.metastore.ingenta.com
1887

Automated spectral domain approach of quasi-periodic denoising in natural images using notch filtration with exact noise profile

Automated spectral domain approach of quasi-periodic denoising in natural images using notch filtration with exact noise profile

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The domain of noise fading from digital images, by virtue of its enormous appellation amongst the researchers, stands out uniquely in the recent research field of image processing over the last few decades. Periodic noises are unintended spurious signals which often agitate an image during acquisition/transmission, thereby resulting in repetitive patterns having spatial dependency and extensively demeaning visual excellence of the image. However, high amplitude noisy spectral components are clearly noticeable from the remaining uncorrupted ones in the corresponding Fourier transformed corrupted image spectrum. Hence, it is easier to distinguish and minimise those noisy components using an appropriate thresholding and filtration technique. Therefore, to start with, a simple yet elegant model of the noise-free natural image has been developed from the corrupted one followed by a proper thresholding method to get the noisy bitmap. Finally, an elegant adaptive sinc restoration filter with the concept of extracting the exact shape of a noise spectrum profile has been applied in the filtration phase. The performance of the proposed algorithm has been assessed both visually and statistically with other state-of-the-art algorithms in the literature in terms of various performance measurement attributes, providing evidence of achieving more effective restoration with considerable lower computational time.

References

    1. 1)
      • 1. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Prentice Hall, NJ, USA, 2007, 3rd edn.).
    2. 2)
      • 2. Chang-Yanab, C., Ji-Xiana, Z., Zheng-Juna, L.: ‘Study on methods of noise reduction in a stripped image’, Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2008, XXXVII, B6b, pp. 213216.
    3. 3)
      • 3. Saravanakumar, S.: ‘Removal of Moiré pattern noise in images using median and Gaussian filter’, Int. J. Sci., Eng. Technol. Res., 2013, 2, (2), pp. 380385.
    4. 4)
      • 4. Koukou, V., Martini, N., Michail, C., et al: ‘Dual energy method for breast imaging: a simulation study’, Comput. Math. Methods Med., 2015, 2015, pp. 18.
    5. 5)
      • 5. Jing, W., Liu, D.C.: ‘2-D FFT for periodic noise removal on strain image’. Int. Conf. on Bioinformatics and Biomedical Engineering, China, 2010.
    6. 6)
      • 6. Schowengerdt, R.: ‘Remote sensing: models and methods for image processing’ (Academic Press, Orlando, FL, 2006).
    7. 7)
      • 7. Chang, Y., Yan, L., Fang, H., et al: ‘Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping’, IEEE Trans. Image Process., 2015, 24, (6), pp. 18521866.
    8. 8)
      • 8. Smith, R.D.: ‘Digital transmission systems’ (Springer Science & Business Media, Heidelberg, 2012, 3rd edn.).
    9. 9)
      • 9. Rindfleisch, T.C., et al: ‘Digital processing of the mariner 6 and 7 pictures’, J. Geophys. Res., 1971, 76, (2), pp. 394417.
    10. 10)
      • 10. Fehrenbach, J., Weiss, P., Lorenzo, C.: ‘Variational algorithms to remove stationary noise: applications to microscopy imaging’, IEEE Trans. Image Process., 2012, 21, (10), pp. 44204430.
    11. 11)
      • 11. Cornelis, B., Dooms, A., Cornelis, J., et al: ‘Digital canvas removal in paintings’, Signal Process., 2012, 92, (4), pp. 11661171.
    12. 12)
      • 12. Ji, Z., Liao, H., Zhang, X., et al: ‘Simple and efficient soft morphological filter in periodic noise reduction’. TENCON 2006-2006 IEEE Region 10 Conf., IEEE, 2006, pp. 14.
    13. 13)
      • 13. Ji, T.Y., Lu, Z., Wu, Q.H.: ‘Optimal soft morphological filter for periodic noise removal using a particle swarm optimiser with passive congregation’, Signal Process., 2007, 87, (11), pp. 27992809.
    14. 14)
      • 14. Hudhud, G.A.A., Turner, M.J.: ‘Digital removal of power frequency artifacts using a Fourier space median filter’, IEEE Signal Process. Lett., 2005, 12, (8), pp. 573576.
    15. 15)
      • 15. Wei, Z., Wang, J., Nichol, H., et al: ‘A median-Gaussian filtering framework for moiré pattern noise removal from X-ray microscopy image’, Micron, 2012, 43, (2), pp. 170176.
    16. 16)
      • 16. Guttman, N., Julesz, B.: ‘Lower limits of auditory periodicity analysis’, J. Acoust. Soc. Am., 1963, 35, (4), pp. 610610.
    17. 17)
      • 17. Sugiura, Y., Kawamura, A., Aikawa, N.: ‘A comb filter with adaptive notch bandwidth for periodic noise reduction’. 2013 9th Int. Conf. on Information, Communications and Signal Processing (ICICS), 2013, pp. 14.
    18. 18)
      • 18. Vaseghi, V.S.: ‘Advanced signal processing and digital noise reduction’ (Wiley, New Jersey, 2013, 3rd edn.).
    19. 19)
      • 19. Aizenberg, I., Butakoff, C.: ‘Non-linear frequency domain filter for quasi periodic noise removal’. Proc. Int. TICSP Workshop on Spectra Methods and Multi-rate Signal Processing, TICSP Series, 2002, vol. 17, pp. 147153.
    20. 20)
      • 20. Aizenberg, I., Butakoff, C.: ‘Frequency domain median-like filter for periodic and quasi-periodic noise removal’, Proc. SPIE, 2002, 4667, pp. 181191.
    21. 21)
      • 21. Aizenberg, I., Butakoff, C.: ‘A windowed Gaussian notch filter for quasi-periodic noise removal’, Image Vis. Comput., 2008, 26, (10), pp. 13471353.
    22. 22)
      • 22. Konstantinidis, A.C., Olivo, A., Munro, P.R.T., et al: ‘Optical characterisation of a CMOS active pixel sensor using periodic noise reduction techniques’, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., 2010, 620, (2), pp. 549556.
    23. 23)
      • 23. Moallem, P., Behnampour, M.: ‘Adaptive optimum notch filter for periodic noise reduction in digital images’, Amirkabir Int. J. Electr. Electron. Eng., 2010, 42, (1), pp. 17.
    24. 24)
      • 24. Ketenci, S., Gangal, A.: ‘Design of Gaussian star filter for reduction of periodic noise and quasi-periodic noise in gray level images’. 2012 Int. Symp. on Innovations in Intelligent Systems and Applications (INISTA), 2012, pp. 15.
    25. 25)
      • 25. Moallem, P., Masoumzadeh, M., Habibi, M.: ‘A novel adaptive Gaussian restoration filter for reducing periodic noises in digital image’, Signal Image Video Process., 2015, 9, (5), pp. 11791191.
    26. 26)
      • 26. Sur, F., Grédiac, M.: ‘Automated removal of quasiperiodic noise using frequency domain statistics’, J. Electron. Imaging, 2015, 24, (1), pp. 013003_1013003_19.
    27. 27)
      • 27. Sur, F.: ‘An a-contrario approach to quasi-periodic noise removal’. 2015 IEEE Int. Conf. on Image Processing (ICIP), 2015, pp. 38413845.
    28. 28)
      • 28. Varghese, J., Subash, S., Tairan, N., et al: ‘Laplacian-based frequency domain filter for the restoration of digital images corrupted by periodic noise’, Can. J. Electr. Comput. Eng., 2016, 39, (2), pp. 8291.
    29. 29)
      • 29. Varghese, J., Subash, S., Tairan, N.: ‘Fourier transform-based windowed adaptive switching minimum filter for reducing periodic noise from digital images’, IET Image Process., 2016, 10, (9), pp. 646656.
    30. 30)
      • 30. Varghese, J.: ‘Adaptive threshold based frequency domain filter for periodic noise reduction’, AEU-Int. J. Electron. Commun., 2016, 70, (12), pp. 16921701.
    31. 31)
      • 31. Van der Schaaf, V.A., Van Hateren, J.V.: ‘Modelling the power spectra of natural images: statistics and information’, Vis. Res., 1996, 36, (17), pp. 27592770.
    32. 32)
      • 32. Torralba, A., Oliva, A.: ‘Statistics of natural image categories’, Netw. Comput. Neural Syst., 2003, 14, (3), pp. 391412.
    33. 33)
      • 33. Savitzky, A., Golay, M.J.: ‘Smoothing and differentiation of data by simplified least squares procedures’, Anal. Chem., 1964, 36, (8), pp. 16271639.
    34. 34)
      • 34. Krumm, J.: ‘Savitzky-Golay filters for 2D images’ (Microsoft Research, Microsoft Corporation, Redmond, WA, 2001). Available at http://research.microsoft.com/en-us/um/people/jckrumm/savgol/savgol.htm.
    35. 35)
      • 35. Chakraborty, D., Tarafder, M.K., Chakraborty, A., et al: ‘A proficient method for periodic and quasi-periodic noise fading using spectral histogram thresholding with sinc restoration filter’, Int. J. Electron. Commun., 2016, 70, (12), pp. 15801592.
    36. 36)
      • 36. Puschner, P., Burns, A.: ‘Guest editorial: a review of worst-case execution-time analysis’, Real-Time Syst., 2000, 18, (2), pp. 115128.
    37. 37)
      • 37. Blieberger, J., Lieger, R.: ‘Worst-case space and time complexity of recursive procedures’, Real-Time Syst., 1996, 11, (2), pp. 115144.
    38. 38)
      • 38. Al-Najjar, Y.A., Soong, D.C.: ‘Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI’, Int. J. Sci. Eng. Res., 2012, 3, (8), pp. 15.
    39. 39)
      • 39. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    40. 40)
      • 40. Kumar, V., Gupta, P.: ‘Importance of statistical measures in digital image processing’, Int. J. Emerging Technol. Adv. Eng., 2012, 2, (8), pp. 5662.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0307
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0307
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address