http://iet.metastore.ingenta.com
1887

Spatially adaptive total variation deblurring with split Bregman technique

Spatially adaptive total variation deblurring with split Bregman technique

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors describe a modified non-blind and blind deconvolution model by introducing a regularisation parameter that incorporates the spatial image information. Indeed, they have used a weighted total variation term, where the weight is a spatially adaptive parameter based on the image gradient. The proposed models are solved by the split Bregman method. To handle adequately the discrete convolution transform in a moderate time, fast Fourier transform is used. Tests are conducted on several images, and for assessing the results, they define appropriate weighted versions of two standard image quality metrics. These new weighted metrics clearly highlight the advantage of the spatially adaptive approach.

References

    1. 1)
      • 1. Chan, T.F., Shen, J.J.: ‘Image processing and analysis: variational, PDE, wavelet, and stochastic methods’ (SIAM, 2005), vol 94.
    2. 2)
      • 2. Tikhonov, A.N., Arsenin, V.Y.: ‘Solutions of ill-posed problems’ (V. H. Winston, Washington, DC, 1977).
    3. 3)
      • 3. Hansen, P.: ‘Rank-Deficient and discrete Ill-posed Problems’ in: ‘Society for industrial and applied mathematics’, (SIAM, Philadelphia, 1998), http://epubs.siam.org/doi/abs/10.1137/1.9780898719697.
    4. 4)
      • 4. Hansen, P.C., O'Leary, D.P.: ‘The use of the l-curve in the regularization of discrete ill-posed problems’, SIAM J. Sci. Comput., 1993, 14, (6), pp. 14871503, http://dx.doi.org/10.1137/0914086.
    5. 5)
      • 5. Rudin, L.I., Osher, S., Fatemi, E.: ‘Nonlinear total variation based noise removal algorithms’, Physica D, 1992, 60, (1-4), pp. 259268, http://dx.doi.org/10.1016/0167-2789(92)90242-F.
    6. 6)
      • 6. Rudin, L., Osher, S.: ‘Total variation based image restoration with free local constraints’. IEEE Int. Conf. Image Processing, 1994, Proc. ICIP-94, November 1994, vol. 1, pp. 3135.
    7. 7)
      • 7. Chan, T., Wong, C.: ‘Total variation blind deconvolution’, IEEE Trans. Image Process., 1998, 7, (3), pp. 370375.
    8. 8)
      • 8. Almeida, M., Almeida, L.: ‘Blind and semi-blind deblurring of natural images’, IEEE Trans. Image Process., 2010, 19, (1), pp. 3652.
    9. 9)
      • 9. Chan, T.F., Wong, C.: ‘Convergence of the alternating minimization algorithm for blind deconvolution’. Linear Algebra and its Applications, special Issue: Conf. Celebrating the 60th Birthday of Robert J. Plemmons, 2000, vol. 316, (1âĂŞ3), pp. 259285, http://www.sciencedirect.com/science/article/pii/S0024379500001415.
    10. 10)
      • 10. Molina, R., Mateos, J., Katsaggelos, A.: ‘Blind deconvolution using a variational approach to parameter, image, and blur estimation’, IEEE Trans. Image Process., 2006, 15, (12), pp. 37153727.
    11. 11)
      • 11. Kundur, D., Hatzinakos, D.: ‘Blind image deconvolution’, IEEE Signal Process. Mag., 1996, 13, (3), pp. 4364.
    12. 12)
      • 12. Chaudhuri, S., Velmurugan, R., Rameshan, R.: ‘Blind image deconvolution: methods and Convergence’ (Springer Int. Publishing, Cham, 2014), ch. Blind deconvolution methods: a review, pp. 3760, http://dx.doi.org/10.1007/978-3-319-10485-0_3.
    13. 13)
      • 13. Goldstein, T., Osher, S.: ‘The split Bregman method for L1-regularized problems’, SIAM J. Imaging Sci., 2009, 2, (2), pp. 323343, http://dx.doi.org/10.1137/080725891.
    14. 14)
      • 14. Ben-Tal, A., Nemirovski, A.: ‘Lectures on modern convex optimization’ In: ‘Society for industrial and applied mathematics’, (SIAM, Philadelphia, 2001), http://epubs.siam.org/doi/abs/10.1137/1.9780898718829.
    15. 15)
      • 15. Perrone, D., Favaro, P.: ‘Total variation blind deconvolution: the devil is in the details’, Proc. of the 2014 IEEE Conf. Computer Vision and Pattern Recognition, ser. CVPR'14, Washington, DC, USA, 2014, pp. 29092916, http://dx.doi.org/10.1109/CVPR.2014.372.
    16. 16)
      • 16. Figueiredo, M., Nowak, R., Wright, S.: ‘Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems’, IEEE J. Sel. Top. Signal Process., 2007, 1, (4), pp. 586597.
    17. 17)
      • 17. Hale, E.T., Yin, W., Zhang, Y.: ‘Fixed-point continuation for ‘l1-minimization: methodology and convergence’, SIAM J. Optim., 2008, 19, (3), pp. 11071130, http://dx.doi.org/10.1137/070698920.
    18. 18)
      • 18. Berg, E., Friedlander, M.: ‘Probing the Pareto Frontier for basis pursuit solutions’, SIAM J. Sci. Comput., 2009, 31, (2), pp. 890912, http://dx.doi.org/10.1137/080714488.
    19. 19)
      • 19. Cai, J.-F., Osher, S., Shen, Z.: ‘Convergence of the linearized Bregman iteration for ‘l1-norm minimization’, Math. Comput., 2009, 78, (268), pp. 21272136.
    20. 20)
      • 20. Cai, J.-F., Osher, S., Shen, Z.: ‘Linearized Bregman iterations for compressed sensing’, Math. Comput., 2009, 78, (267), pp. 15151536.
    21. 21)
      • 21. Osher, S., Burger, M., Goldfarb, D., et al: ‘An iterative regularization method for total variation-based image restoration’, Multiscale Model. Simul., 2005, 4, (2), pp. 460489,.
    22. 22)
      • 22. Osher, S., Mao, Y., Dong, B., et al: ‘Fast linearized Bregman iteration for compressive sensing and sparse denoising’, Commun. Math. Sci., 2010, 8, (1), pp. 93111, http://projecteuclid.org/euclid.cms/1266935015.
    23. 23)
      • 23. Yin, W., Osher, S., Goldfarb, D., et al: ‘Bregman iterative algorithms for L1-minimization with applications to compressed sensing’, SIAM J. Imaging Sci., 2008, 1, (1), pp. 143168.
    24. 24)
      • 24. Beck, A., Teboulle, M.: ‘A fast iterative shrinkage-thresholding algorithm for linear inverse problems’, SIAM J. Imaging Sci., 2009, 2, (1), pp. 183202, http://dx.doi.org/10.1137/080716542.
    25. 25)
      • 25. Combettes, P.L., Pesquet, J.-C.: ‘Proximal thresholding algorithm for minimization over orthonormal bases’, SIAM J. Optim., 2008, 18, (4), pp. 13511376, http://dx.doi.org/10.1137/060669498.
    26. 26)
      • 26. Wen, Z., Yin, W., Goldfarb, D., et al: ‘A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation’, SIAM J. Sci. Comput., 2010, 32, (4), pp. 18321857, http://dx.doi.org/10.1137/090747695.
    27. 27)
      • 27. Yang, J., Zhang, Y.: ‘Alternating direction algorithms for ‘l1-problems in compressive sensing’, SIAM J. Sci. Comput., 2011, 33, (1), pp. 250278, http://dx.doi.org/10.1137/090777761.
    28. 28)
      • 28. van Gennip, Y., Athavale, P., Gilles, J., et al: ‘A regularization approach to blind deblurring and denoising of qr barcodes’, IEEE Trans. Image Process., 2015, 24, (9), pp. 28642873.
    29. 29)
      • 29. Aubert, G., Kornprobst, P.: ‘Mathematical problems in image processing: partial differential equations and the calculus of variations’ (Springer Science & Business Media, New York, 2006), vol 147.
    30. 30)
      • 30. Carlier, G., Comte, M.: ‘On a weighted total variation minimization problem’, J. Funct. Anal., 2007, 250, (1), pp. 214226, http://www.sciencedirect.com/science/article/pii/S0022123607002339.
    31. 31)
      • 31. Bregman, L.M.: ‘The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming’, USSR Comput. Math. Math. Phys., 1967, 7, (3), pp. 200217.
    32. 32)
      • 32. Getreuer, P.: ‘Total variation deconvolution using split Bregman’, Image Process. Line, 2012, 2, pp. 158174.
    33. 33)
      • 33. Martucci, S.: ‘Symmetric convolution and the discrete sine and cosine transforms’, IEEE Trans. Signal Process., 1994, 42, (5), pp. 10381051.
    34. 34)
      • 34. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Prentice-Hall Inc., Upper Saddle River, NJ, USA, 2006, 3rd Edn.).
    35. 35)
      • 35. Gilboa, G., Osher, S.: ‘Nonlocal linear image regularization and supervised segmentation’, Multiscale Model. Simul., 2007, 6, (2), pp. 595630, http://dx.doi.org/10.1137/060669358.
    36. 36)
      • 36. Gilboa, G., Osher, S.: ‘Nonlocal operators with applications to image processing’, Multiscale Model. Simul., 2009, 7, (3), pp. 10051028, http://dx.doi.org/10.1137/070698592.
    37. 37)
      • 37. Mead, J.L.: ‘Statistical tests for total variation regularization parameter selection’. http://math.boisestate.edu/∼mead/papers/TV.pdf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0302
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0302
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address