http://iet.metastore.ingenta.com
1887

Dark target effectiveness for dark-object subtraction atmospheric correction method on mangrove above-ground carbon stock mapping

Dark target effectiveness for dark-object subtraction atmospheric correction method on mangrove above-ground carbon stock mapping

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

One of the most effective atmospheric correction methods is dark-object subtraction (DOS) method, where the atmospheric offset can be generated from the image itself. The success of DOS strongly relies on the availability and quality of the dark target. Based on the response to the downwelling irradiances, the most effective dark target would be optically-deep water, which is not always available. It is important to assess the alternative dark targets in the absence of the ideal dark target. This research aimed at comparing the effectiveness of different dark targets for DOS method during mangrove above-ground carbon stock (AGC) mapping and comparing the accuracy with robust atmospheric correction FLAASH method. ALOS AVNIR-2 image was used as the test image, and mangrove forest of Karimunjawa and Kemujan Island was selected as the study area. The comparison covers the quality of healthy mangrove reflectance and the accuracy of vegetation indices for mangrove AGC mapping. The results of this research showed that non-ideal dark targets such as cloud-shadow pixels and the minimum value of the image can be used in the absence of ideal dark target, and DOS method is more efficient and effective than more robust atmospheric correction method.

References

    1. 1)
      • 1. Liang, S., Fang, H., Chen, M.: ‘Atmospheric correction of landsat ETM + land surface imagery. I. methods’, IEEE Trans. Geosci. Remote Sens., 2001, 39, (11), pp. 24902498.
    2. 2)
      • 2. Mahiny, A.S., Turner, B.J.: ‘A comparison of four common atmospheric correction methods’, Photogramm. Eng. Remote Sens., 2007, 73, (4), pp. 361368.
    3. 3)
      • 3. Song, C., Woodcock, C.E., Seto, K.C., et al: ‘Classification and change detection using landsat TM data’, Remote Sens. Environ., 2001, 75, (2), pp. 230244.
    4. 4)
      • 4. Nelleman, C., Corcoran, E., Duarte, C.M., et al: ‘Blue carbon. A rapid response assessment’ (United Nations Environment Programme, GRID-Arendal, 2009).
    5. 5)
      • 5. Gamon, J.A., Surfus, J.S.: ‘Assessing leaf pigment content and activity with a reflectometer’, New Phytol., 1999, 143, (1), pp. 105117.
    6. 6)
      • 6. Sims, D.A., Gamon, J.A.: ‘Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages’, Remote Sens. Environ., 2002, 81, (2–3), pp. 337354.
    7. 7)
      • 7. Wicaksono, P., Danoedoro, P., Hartono, H., et al: ‘Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image’, in Neale, C.M.U., Maltese, A. (Eds.): ‘Proc. SPIE Remote Sensing’ (Prague, Czech Republic, 2011), doi: 10.1117/12.897926.
    8. 8)
      • 8. Wicaksono, P., Danoedoro, P., Hartono, , et al: ‘Mangrove biomass carbon stock mapping of the karimunjawa islands using multispectral remote sensing’, Int. J. Remote Sens., 2016, 37, (1), pp. 2652.
    9. 9)
      • 9. Armstrong, R.A.: ‘Remote sensing of submerged vegetation canopies for biomass estimation’, Int. J. Remote Sens., 1993, 14, (3), pp. 621627.
    10. 10)
      • 10. Chavez, P.S.: ‘Image-based atmospheric corrections – revisited and improved’, Photogramm. Eng. Remote Sens., 1996, 62, (9), pp. 10251036.
    11. 11)
      • 11. Chavez, P., Berlin, G.L., Mitchell, W.B.: ‘Computer enhancement techniques of landsat MSS digital images for landuse/landcover assessments’. Remote Sensing of Earth Resources, 1977, p. 259.
    12. 12)
      • 12. Hadjimitsis, D.G., Papadavid, G., Agapiou, A., et al: ‘Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices’, Nat. Hazards Earth Syst. Sci., 2010, 10, (1), pp. 8995.
    13. 13)
      • 13. Phinn, S., Roelfsema, C., Dekker, A., et al: ‘Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in moreton Bay (Australia)’, Remote Sens. Environ., 2008, 112, (8), pp. 34133425.
    14. 14)
      • 14. Teillet, P.M., Fedosejevs, G.: ‘On the dark target approach to atmospheric correction of remotely sensed data’, Can. J. Remote Sens., 1995, 21, (4), pp. 374387.
    15. 15)
      • 15. Wicaksono, P., Hafizt, M.: ‘Mapping seagrass from space: addressing the complexity of seagrass LAI mapping’, Eur. J. Remote Sens., 2013, 46, pp. 1839.
    16. 16)
      • 16. Wicaksono, P.: ‘Mangrove above-ground carbon stock mapping of multi-resolution passive remote-sensing systems’, Int. J. Remote Sens., 2017, 38, (6), pp. 15511578.
    17. 17)
      • 17. Griffin, M., Burke, H.: ‘Comparison of hyperspectral data for atmospheric effects’, Lincoln Lab. J., 2003, 14, pp. 2954.
    18. 18)
      • 18. Kotchenova, S.Y., Vermote, E.F., Matarrese, R., et al: ‘Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance’, Appl. Opt., 2006, 45, (26), pp. 67626774.
    19. 19)
      • 19. Kruse, F.: ‘Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using Low-altitude AVIRIS data of boulder, CO’ (2004).
    20. 20)
      • 20. Richter, R., Schläpfer, D.: ‘Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction’, Int. J. Remote Sens., 2002, 23, (13), pp. 26312649.
    21. 21)
      • 21. Nababan, M.G., Munasik. Yulianto, I., et al: ‘Status ekosistem taman nasional karimunjawa: 2010’ (2010).
    22. 22)
      • 22. Ong, J., Gong, W., Wong, C.: ‘Allometry and partitioning of the mangrove, rhizophora apiculata’, For. Ecol. Manage., 2004, 188, (1–3), pp. 395408.
    23. 23)
      • 23. Comley, B.W.T., McGuinness, K.A.: ‘Above and below ground biomass, and allometry, of four common northern Australian mangroves’, Aust. J. Bot., 2005, 53, (5), p. 431.
    24. 24)
      • 24. Poungparn, S., Komiyama, A., Intana, V., et al: ‘A quantitative analysis on the root system of a mangrove, xylocarpus granatum koenig’, Tropics, 2002, 12, (1), pp. 3542.
    25. 25)
      • 25. Clough, B., Scott, K.: ‘Allometric relationships for estimating above-ground biomass in six mangrove species’, For. Ecol. Manage., 1989, 27, (2), pp. 117127.
    26. 26)
      • 26. Komiyama, A., Ong, J.E., Poungparn, S.: ‘Allometry, biomass, and productivity of mangrove forests: a review’, Aquat. Bot., 2008, 89, (2), pp. 128137.
    27. 27)
      • 27. Komiyama, A., Poungparn, S., Kato, S.: ‘Common allometric equations for estimating the tree weight of mangroves’, J. Trop. Ecol., 2005, 21, (4), pp. 471477.
    28. 28)
      • 28. Journal E, I.A.W.A.: ‘Indonesian wood atlas, volume I. Abdurahamin martawijaya, lding kartasujana, kosasi kadir, and sowanda among prawira, vi + 166 pp., illus., 1986’, IAWA J., 1990, 11, (1), pp. 8484.
    29. 29)
      • 29. Harja, D., Rahayu, S., Pambudi, S.: ‘ICRAF Database – wood density’, http://db.worldagroforestry.org/wd, accessed March 2013.
    30. 30)
      • 30. Murakami, H.: ‘Brightness mutual proofreading of AVNIR-2 and MODIS that uses directionality function of the atmospheric top reflectivity, ALOS special issue’, J. Japan Soc. Photogramm. Remote., 2007, 27, (4), pp. 354362.
    31. 31)
      • 31. Green, E., Mumby, P., Edwards, A., et al: ‘Remote sensing handbook for tropical coastal management’ (The United Nations Educational, Scientific and Cultural Organization, Paris, 2000).
    32. 32)
      • 32. Huete, A., Didan, K., Miura, T., et al: ‘Overview of The radiometric and biophysical performance of the MODIS vegetation indices’, Remote Sens. Environ., 2002, 83, (1–2), pp. 195213.
    33. 33)
      • 33. Rouse, J.W., Haas, R.H., Schell, J.A., et al: ‘Monitoring vegetation systems in the great plains with ERTS’, 1974.
    34. 34)
      • 34. Richardson, A.J., Everitt, J.H.: ‘Using spectral vegetation indices to estimate rangeland productivity’, Geocarto Int., 1992, 7, (1), pp. 6369.
    35. 35)
      • 35. Birth, G.S., McVey, G.R.: ‘Measuring the color of growing turf with a reflectance spectrophotometer1’, Agron. J., 1968, 60, (6), p. 640.
    36. 36)
      • 36. Schlerf, M., Atzberger, C., Hill, J.: ‘Remote sensing of forest biophysical variables using HyMap imaging spectrometer data’, Remote Sens. Environ., 2005, 95, (2), pp. 177194.
    37. 37)
      • 37. Huete, A.R., Liu, H.Q.: ‘An error and sensitivity analysis of the atmospheric and soil correcting variants of the NDVI for the MODIS-EOS’, IEEE Trans. Geosci. Remote Sens., 1994, 32, (4), pp. 897905.
    38. 38)
      • 38. Kaufman, Y.J., Tanre, D.: ‘Atmospherically resistant vegetation index (ARVI) for EOS-MODIS’, IEEE Trans. Geosci. Remote Sens., 1992, 30, (2), pp. 261270.
    39. 39)
      • 39. Liu, G.-R., Liang, C.-K., Kuo, T.-H., et al: ‘Comparison of the NDVI, ARVI and AFRI vegetation index, along with their relations with the AOD using SPOT 4 vegetation data’, Terr. Atmos. Ocean. Sci., 2004, 15, (1), p. 15.
    40. 40)
      • 40. Gitelson, A.A., Kaufman, Y.J., Stark, R., et al: ‘Novel algorithms for remote estimation of vegetation fraction’, Remote Sens. Environ., 2002, 80, (1), pp. 7687.
    41. 41)
      • 41. Vina, A., Gitelson, A.A.: ‘Sensitivity to foliar anthocyanin content of vegetation indices using green reflectance’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (3), pp. 464468.
    42. 42)
      • 42. Broge, N.H., Leblanc, E.: ‘Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density’, Remote Sens. Environ., 2001, 76, (2), pp. 156172.
    43. 43)
      • 43. Jiang, Z., Huete, A.R., Didan, K., et al: ‘Development of a two-band enhanced vegetation index without a blue band’, Remote Sens. Environ., 2008, 112, (10), pp. 38333845.
    44. 44)
      • 44. Pinty, B., Verstraete, M.M.: ‘GEMI: A Non-linear index to monitor global vegetation from satellites’, Vegetatio, 1992, 101, (1), pp. 1520.
    45. 45)
      • 45. Martin, S.: ‘An introduction to ocean remote Sensing’ (Cambridge University Press, Cambridge, 2013).
    46. 46)
      • 46. Leprieur, C., Kerr, Y.H., Pichon, J.M.: ‘Critical assessment of vegetation indices from AVHRR in a semi-arid environment’, Int. J. Remote Sens., 1996, 17, (13), pp. 25492563.
    47. 47)
      • 47. Meer, F.D., van der Bakker, W.H., et al: ‘Vegetation indices, above ground biomass estimates and the red edge from MERIS’ (International Society for Photogrammetry and Remote Sensing (ISPRS), Amsterdam, 2000).
    48. 48)
      • 48. Wamunyima, S.: ‘Estimating fresh grass biomass at landscape level using hyperspectral remote Sensing’ (ITC, Enschede, 2005).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0295
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0295
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address