Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Improved visual/infrared colour fusion method with double-opponency colour constancy mechanism

To solve problems that colour distortion and low resolution of infrared and visible colour fusion images, the authors propose a fusion method based on the double-opponency colour constancy mechanism of human vision. First, Waxman's fusion method which imitated the neuro-dynamics mechanism of the rattlesnake bimodal cell is used to fuse the visible light with the source multi-band images to generate pseudo-colour images. Second, a double-opponent colour constancy computation model based on Rodieck's double difference-of-Gaussian is proposed to obtain the estimate of an illuminant of colour fusion images. Finally, the colour fusion images are corrected by the diagonal transformation model based on the cone adaptive mechanism. They also propose to use the three-dimensional RGB histogram to analyse the colour distribution of colour fusion images. In the comparison experiments with other approaches using the three-dimensional RGB histogram, one can see that the proposed fusion method gives colour image coinciding well with natural colour distribution and satisfies human perception needs.

References

    1. 1)
      • 9. Reinhard, E., Ashikhmin, M., Gooch, B., et al: ‘Color transfer between images’, IEEE Comput. Graph. Appl., 2001, 21, (5), pp. 3441.
    2. 2)
      • 10. Li, G.X., Xu, S.Y., Dong, J.H.: ‘Architecture optimized version color transfer based fusion method’, Acta Electron. Sin., 2011, 39, (1), pp. 213216.
    3. 3)
      • 18. http://www.cs.sfu.ca/~colour/data.
    4. 4)
      • 6. Grossberg, S.: ‘Neural networks and natural intelligence’ (MIT Press, Cambridge, Mass., 1998).
    5. 5)
      • 14. Carandini, M., Heeger, D.J.: ‘Normalization as a canonical neural computation’, Nat. Rev. Neurosci., 2011, 13, (1), pp. 5162.
    6. 6)
      • 1. Gao, G., Liu, Y., Aamp, , et al: ‘Infrared and Visible Light Images Fusion Algorithm Based on Non-subsampled Shearlet Transform’. Transactions of Chinese Society of Agriculture, 2014, 45, (3), pp. 268274.
    7. 7)
      • 16. Yuan, X.S., Wang, Z.Z., Xiang, F.T.: ‘Color constancy algorithm based on biological mechanism: color adaptation of cone cells’, J. Image Graph., 2013, 18, (5), pp. 537544.
    8. 8)
      • 17. Gijsenij, A., Gevers, T., Weijer, J. van de, et al: ‘Computational color constancy survey and experiment’, IEEE Trans. Image Process., 2011, 20, (9), pp. 24752489.
    9. 9)
      • 12. Meng, X.L.: ‘Research on image recognition technology inspired by biological vision’. Dissertation, National University of Defense Technology, 2011.
    10. 10)
      • 5. Li, H., Qiu, H., Yu, Z., et al: ‘Infrared and visible image fusion scheme based on NSCT and low-level visual features’, Infrared Phys. Technol., 2016, 76, pp. 174184.
    11. 11)
      • 20. Du, X.Y., Li, Y.J., Yao, D.Z., et al: ‘Color constancy based on image derivative framework and non-negative sparse coding’, Acta Electron. Sin., 2012, 40, (1), pp. 178183.
    12. 12)
      • 8. Waxman, A.M., Gove, A.N., Fay, D. A., et al: ‘Color night vision: opponent processing in the fusion of visible and IR imagery’, Neural Netw., 1997, 10, (1), pp. 16.
    13. 13)
      • 7. Bevil, R. C., Soumya, C., Greg, D. H., et al: ‘Advances in color science: from retina to behavior’, J. Neurosci., 2010, 30, (45), pp. 1495514963.
    14. 14)
      • 15. Mornoney, N., Hewlett-Packard, H.: ‘The CIECAM02 color appearance model’. IS&T/SID 10th Color Imaging Conf., Scottsdale, USA, 2002, pp. 3338.
    15. 15)
      • 13. Gegenfurtner, K.R.: ‘Cortical mechanisms of color vision’, Nat. Rev. Neurosci., 2003, 4, (7), pp. 563572.
    16. 16)
      • 2. Zhang, B., Lu, X., Pei, H., et al: ‘A fusion algorithm for infrared and visible images based on saliency analysis and non-sub sampled shearlet transform’, Infrared Phys. Technol., 2015, 73, pp. 286297.
    17. 17)
      • 11. Rodieck, R.W.: ‘Quantitative analysis of cat retinal ganglion cell response to visual stimuli’, Vis. Res., 1965, 5, (12), pp. 583601.
    18. 18)
      • 19. Li, G.X.: ‘Research on infrared and visible image fusion’. Dissertation, Jilin University, 2008.
    19. 19)
      • 4. Zhang, Q., Maldague, X.: ‘An infrared-visible image fusion scheme based on NSCT and compressed sensing’. Infrared Phys. Technol., 2016, 74, pp. 1120.
    20. 20)
      • 3. Kong, W., Wang, B., Lei, Y.: ‘Technique for infrared and visible image fusion based on non-subsampled shearlet transform and spiking cortical model’, Infrared Phys. Technol., 2015, 71, pp. 8798.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0276
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0276
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address