http://iet.metastore.ingenta.com
1887

Unsupervised cluster-based method for segmenting biological tumour volume of laryngeal tumours in 18F-FDG-PET images

Unsupervised cluster-based method for segmenting biological tumour volume of laryngeal tumours in 18F-FDG-PET images

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In radiotherapy using 18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET), the accurate delineation of the biological tumour volume (BTV) is a crucial step. In this study, the authors suggest a new approach to segment the BTV in 18F-FDG-PET images. The technique is based on the k-means clustering algorithm incorporating automatic optimal cluster number estimation, using intrinsic positron emission tomography image information. Clinical dataset of seven patients have a laryngeal tumour with the actual BTV defined by histology serves as a reference, were included in this study for the evaluation of results. Promising results obtained by the proposed approach with a mean error equal to (0.7%) compared with other existing methods in clinical routine, including fuzzy c-means with (35.58%), gradient-based method with (19.14%) and threshold-based methods.

References

    1. 1)
      • 1. Geets, X., Lee, J.A., Bol, A., et al: ‘A gradient-based method for segmenting FDG-PET images: methodology and validation’, Eur. J. Nucl. Med. Mol. Imaging, 2007, 34, (9), pp. 14271438.
    2. 2)
      • 2. Erdi, Y.E., Mawlawi, O., Larson, S.M., et al: ‘Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding’, Cancer, 1997, 80, (S12), pp. 25052509.
    3. 3)
      • 3. Keyes, J.W.Jr: ‘SUV: standard uptake or silly useless value?’, J. Nucl. Med., 1995, 36, (10), pp. 18361839.
    4. 4)
      • 4. Buvat, I.: ‘Les limites du SUV’, Med. Nucl., 2007, 31, (4), pp. 165172.
    5. 5)
      • 5. Black, Q.C., Grills, I.S., Kestin, L.L., et al: ‘Defining a radiotherapy target with positron emission tomography’, Int. J. Radiat. Oncol. Biol. Phys., 2004, 60, (4), pp. 12721282.
    6. 6)
      • 6. Nestle, U., Kremp, S., Schaefer-Schuler, A., et al: ‘Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer’, J. Nucl. Med., 2005, 46, (8), pp. 13421348.
    7. 7)
      • 7. Daisne, J.F., Sibomana, M., Bol, A., et al: ‘Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms’, Radiother. Oncol., 2003, 69, (3), pp. 247250.
    8. 8)
      • 8. Zaidi, H., El Naqa, I.: ‘PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques’, Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, pp. 21652187.
    9. 9)
      • 9. Zaidi, H., Tsui, B.M.: ‘Review of computational anthropomorphic anatomical and physiological models’, Proc. IEEE, 2009, 97, (12), pp. 19381953.
    10. 10)
      • 10. Daisne, J.F., Duprez, T., Weynand, B., et al: ‘Tumour volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen’, Radiology, 2004, 233, (1), pp. 93100.
    11. 11)
      • 11. El Naqa, I., Yang, D., Apte, A., et al: ‘Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning’, Med. Phys., 2007, 34, pp. 47384749.
    12. 12)
      • 12. Zaidi, H., Abdoli, M., Fuentes, C.L., et al: ‘Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma’, Eur. J. Nucl. Med. Mol. Imaging, 2012, 39, (5), pp. 881891.
    13. 13)
      • 13. Daisne, J.F., Sibomana, M., Bol, A., et al: ‘Evaluation of a multimodality image (CT, MRI and PET) co-registration procedure on phantom and head and neck cancer patients: accuracy, reproducibility and consistency’, Radiother. Oncol., 2003, 69, (3), pp. 237245.
    14. 14)
      • 14. Elad, M.: ‘On the origin of the bilateral filter and ways to improve it’, IEEE Trans. Image Process., 2002, 11, (10), pp. 11411151.
    15. 15)
      • 15. King, M.A., Penney, B.C., Glick, S.J.: ‘An image-dependent Metz filter for nuclear medicine images’, J. Nucl. Med., 1988, 29, (1980), p. 9.
    16. 16)
      • 16. Perona, P., Malik, J.: ‘Scale-space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (7), pp. 629639.
    17. 17)
      • 17. Immerkaer, J.: ‘Fast noise variance estimation’, Comput. Vis. Image Underst., 1996, 64, (2), pp. 300302.
    18. 18)
      • 18. Carasso, A.S.: ‘Linear and nonlinear image deblurring: a documented study’, SIAM J. Numer. Anal., 1999, 36, (6), pp. 16591689.
    19. 19)
      • 19. Van Cittert, P.H.: ‘Zum einfluss der spaltbreite auf die intensitätsverteilung in spektrallinien. ii’, Z. Phys., 1931, 69, (5-6), pp. 298308.
    20. 20)
      • 20. Landweber, L.: ‘An iteration formula for Fredholm integral equations of the first kind’, Am. J. Math., 1951, 73, (3), pp. 615624.
    21. 21)
      • 21. MacQueen, J.: ‘Some methods for classification and analysis of multivariate observations’. Int. Proc. Fifth Berkeley Symp. on Mathematical Statistics and Probability, 1967, 1, (14), pp. 281297.
    22. 22)
      • 22. Aristophanous, M., Penney, B.C., Martel, M.K., et al: ‘A Gaussian mixture model for definition of lung tumour volumes in positron emission tomography’, Med. Phys., 2007, 34, (11), pp. 42234235.
    23. 23)
      • 23. Tafsast, A., Hadjili, M.L., Hafdaoui, H., et al: ‘Automatic Gaussian mixture model (GMM) for segmenting 18F-FDG-PET images based on Akaike information criteria’. Fourth Int. Conf. on Electrical Engineering (ICEE), December 2015, pp. 14.
    24. 24)
      • 24. Bezdek, J.C., Ehrlich, R., Full, W.: ‘FCM: The fuzzy c-means clustering algorithm’, Comput. Geosci., 1984, 10, (2-3), pp. 191203.
    25. 25)
      • 25. Dewalle-Vignion, A.S., Betrouni, N., Lopes, R., et al: ‘A new method for volume segmentation of PET images, based on possibility theory’, IEEE Trans. Med. Imaging, 2011, 30, pp. 409423.
    26. 26)
      • 26. Hatt, M., Le Rest, C.C., Turzo, A., et al: ‘A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET’, IEEE Trans. Med. Imaging, 2009, 28, (6), pp. 881893.
    27. 27)
      • 27. Hatt, M., Lamare, F., Boussion, N., et al: ‘Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET’, Phys. Med. Biol., 2007, 52, (12), p. 3467.
    28. 28)
      • 28. Belhassen, S., Zaidi, H.: ‘A novel fuzzy C-means algorithm for unsupervised heterogeneous tumour quantification in PET’, Med. Phys., 2010, 37, (3), pp. 13091324.
    29. 29)
      • 29. Caliński, T., Harabasz, J.: ‘A dendrite method for cluster analysis’, Commun. Stat.- Theory Methods, 1974, 3, (1), pp. 127.
    30. 30)
      • 30. Davies, D.L., Bouldin, D.W.: ‘A cluster separation measure’, IEEE Trans. Pattern Anal. Mach. Intell., 1979, PAM-1, (2), pp. 224227.
    31. 31)
      • 31. Rousseeuw, P.J.: ‘Silhouettes: a graphical aid to the interpretation and validation of cluster analysis’, J. Comput. Appl. Math., 1987, 20, pp. 5365.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.1024
Loading

Related content

content/journals/10.1049/iet-ipr.2016.1024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address