Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Label fusion method based on sparse patch representation for the brain MRI image segmentation

Loading full text...

Full text loading...

/deliver/fulltext/iet-ipr/11/7/IET-IPR.2016.0988.html;jsessionid=xvvrxmw8cbgy.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-ipr.2016.0988&mimeType=html&fmt=ahah

References

    1. 1)
      • 22. Sdika, M.: ‘Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote’, Med. Image Anal., 2010, 14, (2), pp. 219226.
    2. 2)
      • 1. Bueno, G., Musse, O., Heitz, F., et al: ‘Three-dimensional segmentation of anatomical structures in MR images on large data bases’, Magn. Reson. Imaging, 2001, 19, (1), pp. 7388.
    3. 3)
      • 28. Romero, J.E., Manjón, J.V., Tohka, J., et al: ‘NABS: non-local automatic brain hemisphere segmentation’, Magn. Reson. Imaging, 2015, 33, (4), pp. 474484.
    4. 4)
      • 16. Wu, G., Kim, M., Sanroma, G., et al: ‘Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition’, NeuroImage, 2015, 106, pp. 3446.
    5. 5)
      • 35. Kittler, J., Alkoot, F.M.: ‘Sum versus vote fusion in multiple classifier systems’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (1), pp. 110115.
    6. 6)
      • 4. Crum, W.R., Griffin, L.D., Hill, D.L.G., et al: ‘Zen and the art of medical image registration: correspondence, homology, and quality’, NeuroImage, 2003, 20, (3), pp. 14251437.
    7. 7)
      • 30. Tong, T., Wolz, R., Coupé, P., et al: ‘Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling’, NeuroImage, 2013, 76, pp. 1123.
    8. 8)
      • 31. Wang, L., Shi, F., Gao, Y., et al: ‘Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation’, NeuroImage, 2014, 89, pp. 152164.
    9. 9)
      • 9. Bai, W., Shi, W., O'Regan, D.P., et al: ‘A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images’, IEEE Trans. Med. Imaging, 2013, 32, (7), pp. 13021315.
    10. 10)
      • 37. Hammers, A., Allom, R., Koepp, M.J., et al: ‘Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe’, Hum. Brain Mapp., 2003, 19, (4), pp. 224247.
    11. 11)
      • 32. Zhang, D., Guo, Q., Wu, G., et al: ‘Sparse patch-based label fusion for multi-atlas segmentation’, in Yap, P.T., Liu, T., Shen, D., Westin, C.F., Shen, L. (Eds): ‘Multimodal brain image analysis’ (Springer Berlin Heidelberg, 2012), (LNCS, 7509), pp. 94102.
    12. 12)
      • 7. Cardoso, M.J., Leung, K., Modat, M., et al: ‘STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation’, Med. Image Anal., 2013, 17, (6), pp. 671684.
    13. 13)
      • 33. Zikic, D., Glocker, B., Criminisi, A.: ‘Encoding atlases by randomized classification forests for efficient multi-atlas label propagation’, Med. Image Anal., 2014, 18, (8), pp. 12621273.
    14. 14)
      • 20. Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de-Solorzano, C.: ‘Combination strategies in multi-atlas image segmentation: application to brain MR data’, IEEE Trans. Med. Imaging, 2009, 28, (8), pp. 12661277.
    15. 15)
      • 34. Brebisson, A., Montana, G.: ‘Deep neural networks for anatomical brain segmentation’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2015, pp. 2028.
    16. 16)
      • 8. Aljabar, P., Heckemann, R.A., Hammers, A., et al: ‘Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy’, Neuroimage, 2009, 46, (3), pp. 726738.
    17. 17)
      • 12. Khan, A.R., Cherbuin, N., Wen, W., et al: ‘Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation’, NeuroImage, 2011, 56, (1), pp. 126139.
    18. 18)
      • 2. Klein, S., van der Heide, U.A., Lips, I.M., et al: ‘Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information’, Med. Phys., 2008, 35, (4), pp. 14071417.
    19. 19)
      • 23. Rousseau, R., Habas, P.A., Studholme, C.: ‘A supervised patch-based approach for human brain labeling’, IEEE Trans. Med. Imaging, 2011, 30, (10), pp. 18521862.
    20. 20)
      • 10. Liao, S., Gao, Y., Lian, J., et al: ‘Sparse patch-based label propagation for accurate prostate localization in CT images’, IEEE Trans. Med. Imaging, 2013, 32, (2), pp. 419434.
    21. 21)
      • 17. Sanroma, G., Wu, G., Gao, Y., et al: ‘A transversal approach for patch-based label fusion via matrix completion’, Med. Image Anal., 2015, 24, (1), pp. 135148.
    22. 22)
      • 25. Wang, H., Suh, J.W., Das, S., et al: ‘Regression-based label fusion for multi-atlas segmentation[C]’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 11131120.
    23. 23)
      • 14. Bai, W., Shi, W., Ledig, C., et al: ‘Multi-atlas segmentation with augmented features for cardiac MR images’, Med. Image Anal., 2015, 19, (1), pp. 98109.
    24. 24)
      • 26. Coupe, P., Yger, P., Prima, S., et al: ‘An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images’, IEEE Trans. Med. Imaging, 2008, 27, (4), pp. 425441.
    25. 25)
      • 38. Hammers, A., Chen, C.H., Lemieux, L., et al: ‘Statistical neuroanatomy of the human inferior frontal gyrus and probabilistic atlas in a standard stereotaxic space’, Hum. Brain Mapp., 2007, 28, (1), pp. 3448.
    26. 26)
      • 36. Wright, J., Yang, A.Y., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    27. 27)
      • 21. Isgum, I., Staring, M., Rutten, A., et al: ‘Multi-atlas-based segmentation with local decision fusion—application to cardiac and aortic segmentation in CT scans’, IEEE Trans. Med. Imaging, 2009, 28, (7), pp. 10001010.
    28. 28)
      • 13. Sjöberg, C., Ahnesjö, A.: ‘Multi-atlas based segmentation using probabilistic label fusion with adaptive weighting of image similarity measures’, Comput. Methods Programs Biomed., 2013, 110, (3), pp. 308319.
    29. 29)
      • 11. Coupé, P., Manjón, J.V., Fonov, V., et al: ‘Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation’, NeuroImage, 2011, 54, (2), pp. 940954.
    30. 30)
      • 27. Buades, A., Coll, B., Morel, J.M.: ‘A review of image denoising algorithms, with a new one’, Multiscale Model. Simul., 2005, 4, (2), pp. 490530.
    31. 31)
      • 15. Yaqub, M., Javaid, M.K., Cooper, C., et al: ‘Investigation of the role of feature selection and weighted voting in random forests for 3-D volumetric segmentation’, IEEE Trans. Med. Imaging, 2014, 33, (2), pp. 258271.
    32. 32)
      • 5. Heckemann, R.A., Hajnal, J.V., Aljabar, P., et al: ‘Automatic anatomical brain MRI segmentation combining label propagation and decision fusion’, NeuroImage, 2006, 33, (1), pp. 115126.
    33. 33)
      • 24. Wang, H., Suh, J.W., Das, S.R., et al: ‘Multi-atlas segmentation with joint label fusion’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (3), pp. 611623.
    34. 34)
      • 6. Joshi, S., Davis, B., Jomier, M., et al: ‘Unbiased diffeomorphic atlas construction for computational anatomy[J]’, NeuroImage, 2004, 23, pp. S151S160.
    35. 35)
      • 29. Giraud, R., Ta, V.T., Papadakis, N., et al: ‘An Optimized PatchMatch for multi-scale and multi-feature label fusion’, NeuroImage, 2016, 124, pp. 770782.
    36. 36)
      • 19. Rohlfing, T., Brandt, R., Menzel, R., et al: ‘Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains’, NeuroImage, 2004, 21, (4), pp. 14281442.
    37. 37)
      • 18. Iglesias, J.E., Sabuncu, M.R., Aganj, I., et al: ‘An algorithm for optimal fusion of atlases with different labeling protocols’, NeuroImage, 2015, 106, pp. 451463.
    38. 38)
      • 3. Svarer, C., Madsen, K., Hasselbalch, S.G., et al: ‘MR-based automatic delineation of volumes of interest in human brain PET images using probability maps’, Neuroimage, 2005, 24, (4), pp. 969979.
    39. 39)
      • 39. Klein, S., Staring, M., Murphy, K., et al: ‘Elastix: a toolbox for intensity-based medical image registration’, IEEE Trans. Med. Imaging, 2010, 29, (1), pp. 196205.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0988
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0988
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address