Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Label fusion method based on sparse patch representation for the brain MRI image segmentation

The multi-Atlas patch-based label fusion method (MAS-PBM) has emerged as a promising technique for the magnetic resonance imaging (MRI) image segmentation. The state-of-the-art MAS-PBM approach measures the patch similarity between the target image and each atlas image using the features extracted from images intensity only. It is well known that each atlas consists of both MRI image and labelled image (which is also called the map). In other words, the map information is not used in calculating the similarity in the existing MAS-PBM. To improve the segmentation result, the authors propose an enhanced MAS-PBM in which the maps will be used for similarity measure. The first component of the proposed method is that an initial segmentation result (i.e. an appropriate map for the target) is obtained by using either the non-local-patch-based label fusion method (NPBM) or the sparse patch-based label fusion method (SPBM) based on the grey scales of patches. Then, the SPBM is applied again to obtain the finer segmentation based on the labels of patches. The authors called these two versions of the proposed fusion method as MAS-PBM-NPBM and MAS-PBM-SPBM. Experimental results show that more accurate segmentation results are achieved compared with those of the majority voting, NPBM, SPBM, STEPS and the hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition.

References

    1. 1)
      • 22. Sdika, M.: ‘Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote’, Med. Image Anal., 2010, 14, (2), pp. 219226.
    2. 2)
      • 1. Bueno, G., Musse, O., Heitz, F., et al: ‘Three-dimensional segmentation of anatomical structures in MR images on large data bases’, Magn. Reson. Imaging, 2001, 19, (1), pp. 7388.
    3. 3)
      • 28. Romero, J.E., Manjón, J.V., Tohka, J., et al: ‘NABS: non-local automatic brain hemisphere segmentation’, Magn. Reson. Imaging, 2015, 33, (4), pp. 474484.
    4. 4)
      • 16. Wu, G., Kim, M., Sanroma, G., et al: ‘Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition’, NeuroImage, 2015, 106, pp. 3446.
    5. 5)
      • 35. Kittler, J., Alkoot, F.M.: ‘Sum versus vote fusion in multiple classifier systems’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (1), pp. 110115.
    6. 6)
      • 4. Crum, W.R., Griffin, L.D., Hill, D.L.G., et al: ‘Zen and the art of medical image registration: correspondence, homology, and quality’, NeuroImage, 2003, 20, (3), pp. 14251437.
    7. 7)
      • 30. Tong, T., Wolz, R., Coupé, P., et al: ‘Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling’, NeuroImage, 2013, 76, pp. 1123.
    8. 8)
      • 31. Wang, L., Shi, F., Gao, Y., et al: ‘Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation’, NeuroImage, 2014, 89, pp. 152164.
    9. 9)
      • 9. Bai, W., Shi, W., O'Regan, D.P., et al: ‘A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images’, IEEE Trans. Med. Imaging, 2013, 32, (7), pp. 13021315.
    10. 10)
      • 37. Hammers, A., Allom, R., Koepp, M.J., et al: ‘Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe’, Hum. Brain Mapp., 2003, 19, (4), pp. 224247.
    11. 11)
      • 32. Zhang, D., Guo, Q., Wu, G., et al: ‘Sparse patch-based label fusion for multi-atlas segmentation’, in Yap, P.T., Liu, T., Shen, D., Westin, C.F., Shen, L. (Eds): ‘Multimodal brain image analysis’ (Springer Berlin Heidelberg, 2012), (LNCS, 7509), pp. 94102.
    12. 12)
      • 7. Cardoso, M.J., Leung, K., Modat, M., et al: ‘STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation’, Med. Image Anal., 2013, 17, (6), pp. 671684.
    13. 13)
      • 33. Zikic, D., Glocker, B., Criminisi, A.: ‘Encoding atlases by randomized classification forests for efficient multi-atlas label propagation’, Med. Image Anal., 2014, 18, (8), pp. 12621273.
    14. 14)
      • 20. Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de-Solorzano, C.: ‘Combination strategies in multi-atlas image segmentation: application to brain MR data’, IEEE Trans. Med. Imaging, 2009, 28, (8), pp. 12661277.
    15. 15)
      • 34. Brebisson, A., Montana, G.: ‘Deep neural networks for anatomical brain segmentation’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2015, pp. 2028.
    16. 16)
      • 8. Aljabar, P., Heckemann, R.A., Hammers, A., et al: ‘Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy’, Neuroimage, 2009, 46, (3), pp. 726738.
    17. 17)
      • 12. Khan, A.R., Cherbuin, N., Wen, W., et al: ‘Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation’, NeuroImage, 2011, 56, (1), pp. 126139.
    18. 18)
      • 2. Klein, S., van der Heide, U.A., Lips, I.M., et al: ‘Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information’, Med. Phys., 2008, 35, (4), pp. 14071417.
    19. 19)
      • 23. Rousseau, R., Habas, P.A., Studholme, C.: ‘A supervised patch-based approach for human brain labeling’, IEEE Trans. Med. Imaging, 2011, 30, (10), pp. 18521862.
    20. 20)
      • 10. Liao, S., Gao, Y., Lian, J., et al: ‘Sparse patch-based label propagation for accurate prostate localization in CT images’, IEEE Trans. Med. Imaging, 2013, 32, (2), pp. 419434.
    21. 21)
      • 17. Sanroma, G., Wu, G., Gao, Y., et al: ‘A transversal approach for patch-based label fusion via matrix completion’, Med. Image Anal., 2015, 24, (1), pp. 135148.
    22. 22)
      • 25. Wang, H., Suh, J.W., Das, S., et al: ‘Regression-based label fusion for multi-atlas segmentation[C]’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 11131120.
    23. 23)
      • 14. Bai, W., Shi, W., Ledig, C., et al: ‘Multi-atlas segmentation with augmented features for cardiac MR images’, Med. Image Anal., 2015, 19, (1), pp. 98109.
    24. 24)
      • 26. Coupe, P., Yger, P., Prima, S., et al: ‘An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images’, IEEE Trans. Med. Imaging, 2008, 27, (4), pp. 425441.
    25. 25)
      • 38. Hammers, A., Chen, C.H., Lemieux, L., et al: ‘Statistical neuroanatomy of the human inferior frontal gyrus and probabilistic atlas in a standard stereotaxic space’, Hum. Brain Mapp., 2007, 28, (1), pp. 3448.
    26. 26)
      • 36. Wright, J., Yang, A.Y., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    27. 27)
      • 21. Isgum, I., Staring, M., Rutten, A., et al: ‘Multi-atlas-based segmentation with local decision fusion—application to cardiac and aortic segmentation in CT scans’, IEEE Trans. Med. Imaging, 2009, 28, (7), pp. 10001010.
    28. 28)
      • 13. Sjöberg, C., Ahnesjö, A.: ‘Multi-atlas based segmentation using probabilistic label fusion with adaptive weighting of image similarity measures’, Comput. Methods Programs Biomed., 2013, 110, (3), pp. 308319.
    29. 29)
      • 11. Coupé, P., Manjón, J.V., Fonov, V., et al: ‘Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation’, NeuroImage, 2011, 54, (2), pp. 940954.
    30. 30)
      • 27. Buades, A., Coll, B., Morel, J.M.: ‘A review of image denoising algorithms, with a new one’, Multiscale Model. Simul., 2005, 4, (2), pp. 490530.
    31. 31)
      • 15. Yaqub, M., Javaid, M.K., Cooper, C., et al: ‘Investigation of the role of feature selection and weighted voting in random forests for 3-D volumetric segmentation’, IEEE Trans. Med. Imaging, 2014, 33, (2), pp. 258271.
    32. 32)
      • 5. Heckemann, R.A., Hajnal, J.V., Aljabar, P., et al: ‘Automatic anatomical brain MRI segmentation combining label propagation and decision fusion’, NeuroImage, 2006, 33, (1), pp. 115126.
    33. 33)
      • 24. Wang, H., Suh, J.W., Das, S.R., et al: ‘Multi-atlas segmentation with joint label fusion’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (3), pp. 611623.
    34. 34)
      • 6. Joshi, S., Davis, B., Jomier, M., et al: ‘Unbiased diffeomorphic atlas construction for computational anatomy[J]’, NeuroImage, 2004, 23, pp. S151S160.
    35. 35)
      • 29. Giraud, R., Ta, V.T., Papadakis, N., et al: ‘An Optimized PatchMatch for multi-scale and multi-feature label fusion’, NeuroImage, 2016, 124, pp. 770782.
    36. 36)
      • 19. Rohlfing, T., Brandt, R., Menzel, R., et al: ‘Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains’, NeuroImage, 2004, 21, (4), pp. 14281442.
    37. 37)
      • 18. Iglesias, J.E., Sabuncu, M.R., Aganj, I., et al: ‘An algorithm for optimal fusion of atlases with different labeling protocols’, NeuroImage, 2015, 106, pp. 451463.
    38. 38)
      • 3. Svarer, C., Madsen, K., Hasselbalch, S.G., et al: ‘MR-based automatic delineation of volumes of interest in human brain PET images using probability maps’, Neuroimage, 2005, 24, (4), pp. 969979.
    39. 39)
      • 39. Klein, S., Staring, M., Murphy, K., et al: ‘Elastix: a toolbox for intensity-based medical image registration’, IEEE Trans. Med. Imaging, 2010, 29, (1), pp. 196205.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0988
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0988
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address