access icon free Efficient approach for non-ideal iris segmentation using improved particle swarm optimisation-based multilevel thresholding and geodesic active contours

Segmentation is an important step in iris recognition framework because the accuracy of the iris recognition system is affected by the segmentation of the iris. The image acquisition introduces noise artefacts such as specular reflections, eyelids/eyelashes occlusions and overlapping intensities, which makes the segmentation process difficult. An efficient method has been proposed for the segmentation of iris images that deal with non-circular iris boundaries and other noise artefacts mentioned above. The proposed method uses the Otsu multilevel thresholding based on improved particle swarm optimisation technique as a pre-segmentation step. Pre-segmentation step delimits the iris region from the other parts of an eye image. The geodesic active contours incorporated with a novel stopping function is then used to segment non-circular iris boundaries. The recognition accuracy of the proposed method is verified using the standard databases, CASIA v3 Interval and UBIRISv1. Obtained results have been compared with existing methods and have an encouraging performance.

Inspec keywords: feature extraction; image recognition; particle swarm optimisation; iris recognition; medical image processing; image segmentation

Other keywords: efficient approach; noise artefacts; nonideal iris segmentation; segmentation process; iris region; eye image; iris recognition system; recognition accuracy; eyelids/eyelashes occlusions; improved particle swarm optimisation technique; pre-segmentation step; overlapping intensities; Otsu multilevel thresholding; iris images; segment noncircular iris boundaries; iris recognition framework; geodesic active contours; image acquisition

Subjects: Optical, image and video signal processing; Image recognition; Computer vision and image processing techniques

References

    1. 1)
      • 3. Daugman, J.: ‘How Iris recognition works’, Essent. Guid. Image Process., 2009, 14, (1), pp. 715739.
    2. 2)
      • 33. Luengo-Oroz, M.A., Faure, E., Angulo, J.: ‘Robust iris segmentation on uncalibrated noisy images using mathematical morphology’, Image Vis. Comput., 2010, 28, (2), pp. 278284.
    3. 3)
      • 19. Daugman, J.G.: ‘High confidence visual recognition of persons by a test of statistical independence’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15, pp. 11481161.
    4. 4)
      • 4. Wildes, R.P.: ‘Iris recognition: an emerging biometric technology’, Proc. IEEE, 1997, 85, (9), pp. 13481363.
    5. 5)
      • 30. Shekar, B.H., Bhat, S.S.: ‘Multi-Patches iris based person authentication system using particle swarm optimization and fuzzy C-means clustering’, ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2017, XLII-2/W4, May, pp. 243249.
    6. 6)
      • 16. Sahmoud, S.A., Abuhaiba, I.S.: ‘Efficient iris segmentation method in unconstrained environments’, Pattern Recognit., 2013, 46, (12), pp. 31743185.
    7. 7)
      • 20. Caselles, V., Kimmel, R., Sapiro, G.: ‘Geodesic active contours’, IEEE Int. Conf. Comput. Vis., 1995, 22, (1), pp. 694699.
    8. 8)
      • 25. Liao, P.S., Chen, T.S., Chung, P.C.: ‘A fast algorithm for multilevel thresholding’, J. Inf. Sci. Eng., 2001, 17, (5), pp. 713727.
    9. 9)
      • 24. Kapur, J. N., Sahoo, P. K., Wong, A. K. C.: ‘A new method for grey-level picture thresholding using the entropy of the histogram’, Comput. Vis. Graph. Image Process., 1988, 29, pp. 273285.
    10. 10)
      • 9. Roy, K., Bhattacharya, P., Suen, C.Y.: ‘Towards nonideal iris recognition based on level set method, genetic algorithms and adaptive asymmetrical SVMs’, Eng. Appl. Artif. Intell., 2011, 24, (3), pp. 458475.
    11. 11)
      • 2. European Commission Joint Research Center: ‘Biometrics at the frontiers: assessing the impact on society’. 2005, p. 166.
    12. 12)
      • 17. Shah, S., Ross, A.: ‘Iris segmentation using geodesic active contours’, Inf. Forensics Secur. IEEE Trans., 2009, 4, (4), pp. 824836.
    13. 13)
      • 12. Chen, R., Lin, X.R., Ding, T.H.: ‘Iris segmentation for non-cooperative recognition systems’, IET Image Process., 2011, 5, (May 2010), pp. 448456.
    14. 14)
      • 26. Dong, L., Yu, G., Ogunbona, P., et al: ‘An efficient iterative algorithm for image thresholding’, Pattern Recognit. Lett., 2008, 29, (9), pp. 13111316.
    15. 15)
      • 14. Frucci, M., Nappi, M., Riccio, D., et al: ‘WIRE: watershed based iris recognition’, Pattern Recognit., 2016, 52, pp. 148159.
    16. 16)
      • 18. Bouaziz, A., Draa, A., Chikhi, S.: ‘Artificial bees for multilevel thresholding of iris images’, Swarm Evol. Comput., 2015, 21, pp. 3240.
    17. 17)
      • 11. Pundlik, S., Woodard, D., Birchfield, S.: ‘Iris segmentation in non-ideal images using graph cuts’, Image Vis. Comput., 2010, 28, (12), pp. 16711681.
    18. 18)
      • 1. Flom, L., Safir, A.: ‘Iris recognition system’. US Patent 4,641,349, 1987.
    19. 19)
      • 15. Li, P., Liu, X., Xiao, L., et al: ‘Robust and accurate iris segmentation in very noisy iris images’, Image Vis. Comput., 2010, 28, (2), pp. 246253.
    20. 20)
      • 34. Wu, Y., Peng, X., Ruan, K., et al: ‘Improved image segmentation method based on morphological reconstruction’, Multimed. Tools Appl., 2016, pp. 113.
    21. 21)
      • 28. Zhang, J., Hu, J.: ‘Image segmentation based on 2D Otsu method with histogram analysis’. 2008 Int. Conf. Computer Science and Software Engineering, 2008, (1), pp. 105108.
    22. 22)
      • 22. Kichenassamy, S., Kumar, A., Olver, P., et al: ‘Gradient flows and geometric active contour models’. Proc. IEEE Int. Conf. Computer Vision, Cambridge, USA, 1995, pp. 49.
    23. 23)
      • 7. Ma, L., Wang, Y., Tan, T.: ‘Iris recognition using circular symmetric filters’, Object Recognit. Support. User Interact. Serv. Robot., 2002, 2, pp. 414417.
    24. 24)
      • 31. Shi, Y., Eberhart, R.: ‘A modified particle swarm optimizer’. IEEE World Congress on Computational Intelligence. The 1998 IEEE Int. Conf. Evolutionary Computation Proc., Anchorage, USA, 1998, pp. 6973.
    25. 25)
      • 13. Wan, H.-L., Li, Z.-C., Qiao, J.-P., et al: ‘Non-ideal iris segmentation using anisotropic diffusion’, IET Image Process., 2013, 7, (2), pp. 111120.
    26. 26)
      • 23. Otsu, N.: ‘A threshold selection method from gray-level histogram’, IEEE Trans. Syst. Man. Cybern., 1979, 9, (1), pp. 6266.
    27. 27)
      • 10. Jeong, D.S., Hwang, J.W., Kang, B.J., et al: ‘A new iris segmentation method for non-ideal iris images’, Image Vis. Comput., 2010, 28, (2), pp. 254260.
    28. 28)
      • 5. Masek, L., Kovesi, P.: ‘A biometric identification system based on iris patterns’. The School of Computer Science and Software Engineering, The University of Westrern Australia, 2003.
    29. 29)
      • 6. Miyazawa, K., Ito, K., Aoki, T., et al: ‘An effective approach for Iris recognition using phase-based image matching’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (10), pp. 17411756.
    30. 30)
      • 8. Daugman, J.: ‘New methods in iris recognition’, IEEE Trans. Syst. Man. Cybern. B. Cybern., 2007, 37, (5), pp. 11671175.
    31. 31)
      • 29. Eberhart, R., Kennedy, J.: ‘A new optimizer using particle swarm theory’. Proc. Sixth Int. Symp. Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 3943.
    32. 32)
      • 35. Mansfield, T., Kelly, G., Chandler, D., et al: Biometric Product Testing Final Report, 2001, pp. 122.
    33. 33)
      • 21. Kass, M., Witkin, A., Terzopoulos, D.: ‘Snakes: active contour model’, Int. J. Comput. Vis., 1998, 1, (4), pp. 321331.
    34. 34)
      • 32. Hu, X., Shi, Y., Eberhart, R.: ‘Recent advances in particle swarm’. Proc. 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, USA, 2004, pp. 9097.
    35. 35)
      • 27. Huang, D.Y., Wang, C.H.: ‘Optimal multi-level thresholding using a two-stage Otsu optimization approach’, Pattern Recognit. Lett., 2009, 30, (3), pp. 275284.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0917
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0917
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading