http://iet.metastore.ingenta.com
1887

Generalised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentation

Generalised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Intuitionistic fuzzy sets (IFSs), rough sets are efficient tools to handle uncertainty and vagueness present in images and recently are combined to segment medical images in the presence of noise and intensity non homogeneity (INU). These hybrid algorithms are sensitive to initial centroids, parameter tuning and dependency with the fuzzy membership function to define the IFS. In this paper, a novel clustering algorithm, namely generalized rough intutionistic fuzzy c-means (GRIFCM) is proposed for brain magnetic resonance (MR) image segmentation avoiding the dependency with the fuzzy membership function. In this algorithm, each pixel is categorized into three rough regions based on the thresholds obtained by the image data by minimizing the noise. These regions are used to create IFS. The distance measure based on IFS eliminate's the influence of noise and INU present in the image producing accurate brain tissue segmentation. The proposed algorithm is evaluated through simulation and compared it with existing k-means (KM), fuzzy c-means (FCM), Rough fuzzy c-means (RFCM), Generalized rough fuzzy c-means (GRFCM), soft rough fuzzy c-means (SRFCM) and rough intuitionistic fuzzy c-means (RIFCM) algorithms. Experimental results prove the superiority of the proposed algorithm over the considered algorithms in all analyzed scenarios.

References

    1. 1)
      • 1. Tou, J.T., Gonzalez, R.C.: ‘Pattern recognition’ (Reading, Addison-Wesley, MA, 1974).
    2. 2)
      • 2. Modha, D.S., Spangler, W.S.: ‘Feature weighting in k-means clustering’, Mach. Learn., 2003, 52, (3), pp. 217237.
    3. 3)
      • 3. Bezdek, J.C., Ehrlich, R., Full, W.: ‘FCM: the fuzzy c-means clustering algorithm’, Comput. Geosci., 1984, 10, (2), pp. 191203.
    4. 4)
      • 4. Hall, L.O., Bensaid, A.M., Clarke, L.P., et al: ‘A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain’, IEEE Trans. Neural Netw., 1992, 3, (5), pp. 672682.
    5. 5)
      • 5. Pal, N.R., Pal, K., Keller, J.M., et al: ‘A possibilistic fuzzy c-means clustering algorithm’, IEEE Trans. Fuzzy Syst., 2005, 13, (4), pp. 517530.
    6. 6)
      • 6. Chuang, K.-S., Tzeng, H.-L., Chen, S., et al: ‘Fuzzy c-means clustering with spatial information for image segmentation’, Comput. Med. Imaging Graph., 2006, 30, (1), pp. 915.
    7. 7)
      • 7. Cai, W., Chen, S., Zhang, D.: ‘Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation’, Pattern Recognit., 2007, 40, (3), pp. 825838.
    8. 8)
      • 8. Krinidis, S., Chatzis, V.: ‘A robust fuzzy local information C-means clustering algorithm’, IEEE Trans. Image Process., 2010, 19, (5), pp. 13281337.
    9. 9)
      • 9. Li, C., Gore, J.C., Davatzikos, C.: ‘Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation’, Magn. Reson. Imaging, 2014, 32, (7), pp. 913923.
    10. 10)
      • 10. Pawlak, Z.: ‘Rough set approach to knowledge-based decision support’, Eur. J. Oper. Res., 1997, 99, (1), pp. 4857.
    11. 11)
      • 11. Dubois, D., Prade, H.: ‘Rough fuzzy sets and fuzzy rough sets*’, Int. J. Gen. Syst., 1990, 17, (2-3), pp. 191209.
    12. 12)
      • 12. Lingras, P., West, C.: ‘Interval set clustering of web users with rough k-means’, J. Intell. Inf. Syst., 2004, 23, (1), pp. 516.
    13. 13)
      • 13. Maji, P., Pal, S.K.: ‘RFCM: a hybrid clustering algorithm using rough and fuzzy sets’, Fundam. Inform., 2007, 80, (4), pp. 475496.
    14. 14)
      • 14. Maji, P., Pal, S.K.: ‘Rough set based generalized fuzzy c-means algorithm and quantitative indices’, IEEE Trans. Syst. Man Cybern., 2007, 37, (6), pp. 15291540.
    15. 15)
      • 15. Maji, P., Pal, S.K.: ‘Maximum class separability for rough-fuzzy c-means based brain MR image segmentation’, in (EDs.): ‘Transactions on Rough Sets IX’ (Springer, 2008, 1st edn.), pp. 114134.
    16. 16)
      • 16. Mitra, S., Pedrycz, W., Barman, B.: ‘Shadowed c-means: integrating fuzzy and rough clustering’, Pattern Recognit., 2010, 43, (4), pp. 12821291.
    17. 17)
      • 17. Anupama, N., Kumar, S.S., Reddy, E.S.: ‘Soft fuzzy rough set-based MR brain image segmentation’, Appl. Soft Comput., 2016, 54, pp. 456466.
    18. 18)
      • 18. Atanassov, K.T.: ‘Intuitionistic fuzzy sets’, Fuzzy Sets Syst., 1986, 20, (1), pp. 8796.
    19. 19)
      • 19. De, S.K., Biswas, R., Roy, A.R.: ‘An application of intuitionistic fuzzy sets in medical diagnosis’, Fuzzy Sets Syst., 2001, 117, (2), pp. 209213.
    20. 20)
      • 20. Xu, Z., Chen, J., Wu, J.: ‘Clustering algorithm for intuitionistic fuzzy sets’, Inf. Sci., 2008, 178, (19), pp. 37753790.
    21. 21)
      • 21. Mushrif, M.M., Ray, A.K.: ‘A IFS histon based multithresholding algorithm for color image segmentation’, IEEE Signal Proc. Lett., 2009, 16, (3), pp. 168171.
    22. 22)
      • 22. Chaira, T.: ‘A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images’, Appl. Soft Comput., 2011, 11, (2), pp. 17111717.
    23. 23)
      • 23. Chaira, T.: ‘A rank ordered filter for medical image edge enhancement and detection using intuitionistic fuzzy set’, Appl. Soft Comput., 2012, 12, (4), pp. 12591266.
    24. 24)
      • 24. Melo-Pinto, P., Couto, P., Bustince, H., et al: ‘Image segmentation using Atanassov's intuitionistic fuzzy sets’, Expert Syst. Appl., 2013, 40, (1), pp. 1526.
    25. 25)
      • 25. Ananthi, V., Balasubramaniam, P., Lim, C.P.: ‘Segmentation of gray scale image based on intuitionistic fuzzy sets constructed from several membership functions’, Pattern Recognit., 2014, 47, (12), pp. 38703880.
    26. 26)
      • 26. Ananthi, V., Balasubramaniam, P., Kalaiselvi, T.: ‘A new fuzzy clustering algorithm for the segmentation of brain tumor’, Soft Comput., 2016, 20, (12), pp. 48594879.
    27. 27)
      • 27. Balasubramaniam, P., Ananthi, V.: ‘Segmentation of nutrient deficiency in incomplete crop images using intuitionistic fuzzy C-means clustering algorithm’, Nonlinear Dyn., 2016, 83, (1-2), pp. 849866.
    28. 28)
      • 28. Verma, H., Agrawal, R., Sharan, A.: ‘An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation’, Appl. Soft Comput., 2015, 46, pp. 543557.
    29. 29)
      • 29. Verma, H., Agrawal, R.: ‘Possibilistic intuitionistic fuzzy c-means clustering algorithm for MRI brain image segmentation’, Int. J. Artif. Intell. Tools, 2015, 24, (05), pp. 1550016-11550016-24.
    30. 30)
      • 30. Dubey, Y.K., Mushrif, M.M., Mitra, K.: ‘Segmentation of brain MR images using rough set based intuitionistic fuzzy clustering’, Biocybern. Biomed. Eng., 2016, 36, (2), pp. 413426.
    31. 31)
      • 31. Ji, Z., Sun, Q., Xia, Y., et al: ‘Generalized rough fuzzy c-means algorithm for brain MR image segmentation’, Comput. Methods Programs Biomed., 2012, 108, (2), pp. 644655.
    32. 32)
      • 32. Pham, D.L.: ‘Spatial models for fuzzy clustering’, Comput. Vis. Image Underst., 2001, 84, (2), pp. 285297.
    33. 33)
      • 33. Pedrycz, W., Rai, P.: ‘Collaborative clustering with the use of fuzzy c-means and its quantification’, Fuzzy Sets Syst., 2008, 159, (18), pp. 23992427.
    34. 34)
      • 34. Szmidt, E.: ‘Distances and similarities in intuitionistic fuzzy sets’ (Springer, 1st edn, 2014).
    35. 35)
      • 35. Web, B.: ‘Simulated brain database’, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill, 2004. Available at: http://brainweb.bic.mni.mcgill.ca/brainweb, accessed 13 March 2015.
    36. 36)
      • 36. IBSR: ‘The Internet brain segmentation repository’. Available at http://www.cma.mgh.harvard.edu/ibsr/, accessed 7 November 2013.
    37. 37)
      • 37. ‘MPRAGE – magnetizaiton-prepared rapid gradient-echo imaging’. Available at http://www.mrtip.com/serv1.php?type=isimg, accessed 1 August 2016.
    38. 38)
      • 38. McAuliffe, M.: ‘Medical image processing, analysis, and visualization (MIPAV)’, Natl. Inst. Health, 2009, 4, (0).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0891
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0891
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address