http://iet.metastore.ingenta.com
1887

Investigating local orientation methods to segment microstructure with 3D solid texture

Investigating local orientation methods to segment microstructure with 3D solid texture

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates local orientation-based approaches to the complex problem of pattern segmentation in three-dimensional (3D) texture image. The current problem focuses on the extraction of so-called lamellar colonies in titanium alloy, which, from the materials science and engineering point of view, are microstructural features that play a fundamental role on crack propagation and bifurcation during mechanical loading. Methods based on local orientation estimation extend the notion of using local gradient to reveal variation of semi-planar pattern orientation in the 3D image. The study introduces a computational approach that accelerates the calculation of the eigenvectors from the local matrices of inertia of all voxels composing the 3D image. Then different paths are proposed to segment colonies or inter-colony boundaries, i.e. polar orientation map and minimum scalar product map, in order to delimitate regions of similar orientations. The investigated segmentation methods have been compared with other methods that are mainly based on the popular solution of filter banks. Tests, which have been performed on both synthetic and real 3D images, show that the proposed local orientation-based methods better delineate object boundaries than the counterparts.

References

    1. 1)
      • 1. Birosca, S., Buffiere, J.-Y., Garcia-Pastor, F.A., et al: ‘Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction’, Acta Mater., 2009, 57, pp. 58345847.
    2. 2)
      • 2. Ferrie, E., Buffiere, J.-Y., Ludwig, W.: ‘3D characterisation of the nucleation of a short fatigue crack at a pore in a cast Al alloy using high resolution synchrotron microtomography’, Int. J. Fatigue, 2005, 27, pp. 12151220.
    3. 3)
      • 3. Aktouf, Z., Bertrand, G., Perroton, L.: ‘A three-dimensional holes closing algorithm’, Pattern Recognit. Lett., 2002, 23, pp. 523531.
    4. 4)
      • 4. Janaszewski, M., Couprie, M., Babout, L.: ‘Hole filling in 3D volumetric objects’, Pattern Recognit., 2010, 43, pp. 35483559.
    5. 5)
      • 5. Babout, L., Janaszewski, M., Marrow, T.J., et al: ‘A method for the 3-D quantification of bridging ligaments during crack propagation’, Scr. Mater., 2011, 65, (2), pp. 131134.
    6. 6)
      • 6. Jones, J.R., Poologasundarampillai, G., Atwood, R.C., et al: ‘Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds’, Biomaterials, 2007, 28, pp. 14041413.
    7. 7)
      • 7. Jeulin, D., Moreaud, M.: ‘Segmentation of 2D and 3D textures from estimates of the local orientation’, Image Anal. Stereol., 2008, 27, pp. 183192.
    8. 8)
      • 8. Vanderesse, N., Maire, E., Darrieulat, M., et al: ‘Three-dimensional microtomographic study of Widmanstatten microstructures in an alpha/beta titanium alloy’, Scr. Mater., 2008, 58, pp. 512515.
    9. 9)
      • 9. Babout, L., Jopek, Ł., Preuss, M.: ‘3D characterization of trans- and inter-lamellar fatigue crack in (α + β) Ti alloy’, Mater. Charact., 2014, 98, pp. 130139.
    10. 10)
      • 10. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    11. 11)
      • 11. Bales, B., Pollock, T., Petzold, L.: ‘Segmentation-free image processing and analysis of precipitate shapes in 2D and 3D’, Model. Simul. Mater. Sci. Eng., 2017, 25, (4), p. 45009.
    12. 12)
      • 12. Daenzer, S., Freitag, S., von Sachsen, S., et al: ‘VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI’, Med. Phys., 2014, 41, (8), Part1, p. 82305.
    13. 13)
      • 13. Liu, K., Skibbe, H., Schmidt, T., et al: ‘Rotation-invariant HOG descriptors using Fourier analysis in polar and spherical coordinates’, Int. J. Comput. Vis., 2014, 106, (3), pp. 342364.
    14. 14)
      • 14. Chenouard, N., Unser, M.: ‘3D steerable wavelets in practice’, IEEE Trans. Image Process., 2012, 21, (11), pp. 45224533.
    15. 15)
      • 15. Depeursinge, A., Foncubierta-Rodriguez, A., Van de Ville, D., et al: ‘Rotation–covariant texture learning using steerable Riesz wavelets’, IEEE Trans. Image Process., 2014, 23, (2), pp. 898908.
    16. 16)
      • 16. Dicente Cid, Y., Muller, H., Platon, A., et al: ‘3D solid texture classification using locally-oriented wavelet transforms’, IEEE Trans. Image Process., 2017, 26, (4), pp. 18991910.
    17. 17)
      • 17. Chenouard, N., Unser, M.: ‘3D steerable wavelets and monogenic analysis for bioimaging’. IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro’ IEEE, Chicago, IL, USA, 2011, pp. 21322135.
    18. 18)
      • 18. Paulhac, L., Makris, P., Ramel, J.-Y.: ‘A solid texture database for segmentation and classification experiments’. 4th Int. Conf. on Computer Vision Theory and Applications, 2009, pp. 135141.
    19. 19)
      • 19. Candes, E., Demanet, L., Donoho, D., et al: ‘Fast discrete curvelet transforms’, Multiscale Model. Simul., 2006, 5, pp. 861899.
    20. 20)
      • 20. Donoho, D.: ‘Ridge functions and orthonormal ridgelets’, J. Approx. Theory, 2001, 111, pp. 143179.
    21. 21)
      • 21. Do, M.N., Vetterli, M.: ‘The contourlet transform: an efficient directional multiresolution image representation’, IEEE Trans. Image Process., 2005, 14, pp. 20912106.
    22. 22)
      • 22. Lu, Y.M., Do, M.N.: ‘Multidimensional directional filter banks and surfacelets’, IEEE Trans. Image Process., 2007, 16, pp. 918931.
    23. 23)
      • 23. Babout, L., Jopek, L., Janaszewski, M.: ‘A new directional filter bank for 3D texture segmentation: application to lamellar microstructure in titanium alloy’. 13th IAPR Int. Conf. on Machine Vision Applications, 2013, pp. 419422.
    24. 24)
      • 24. Russ, G.C.: ‘The imaging processing handbook’ (CRC Press, Boca Raton, 1995, 2nd edn.).
    25. 25)
      • 25. Al Darwich, R., Babout, L.: ‘Optimization of 3d local orientation map calculation in the matlab framework’, IAPGOŚ,, 2015, 2, pp. 2224.
    26. 26)
      • 26. Wituła, R., Słota, D.: ‘Cardano's formula, square roots, Chebyshev polynomials and radicals’, J. Math. Anal. Appl., 2010, 363, (2), pp. 639647.
    27. 27)
      • 27. Lanczos, C.: ‘An iteration method for the solution of the eigenvalue problem of linear differential and integral operators’, J. Res. Natl. Bur. Stand. (1934)., 1950, 45, (4), p. 255.
    28. 28)
      • 28. Theodoridis, S., Koutroumbas, K.: ‘Pattern recognition’ (Academic Press, Burlington, 2009, 4th edn.).
    29. 29)
      • 29. Comaniciu, D., Meer, P.: ‘Mean shift: a robust approach toward feature space analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, pp. 603619.
    30. 30)
      • 30. Couprie, C., Grady, L., Najman, L., et al: ‘Power watershed: a unifying graph-based optimization framework’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (7), pp. 13841399.
    31. 31)
      • 31. Cousty, J., Bertrand, G., Najman, L., et al: ‘Watershed cuts: minimum spanning forests and the drop of water principle’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (8), pp. 13621374.
    32. 32)
      • 32. Meyer, F.: ‘Topographic distance and watershed lines’, Signal Process., 1994, 38, (1), pp. 113125.
    33. 33)
      • 33. Couprie, M., Bertrand, G.: ‘Topological grayscale watershed transformation’, in Melter, R.A., Wu, A.Y., Latecki, L.J. (Eds.): ‘Proceedings of the society of photo-optical instrumentation engineers (SPIE)’ (Spie – International Society for Optical Engineering, Bellingham, WA, 1997), pp. 136146.
    34. 34)
      • 34. Boykov, Y., Funka-Lea, G.: ‘Graph cuts and efficient N-D image segmentation’, Int. J. Comput. Vis., 2006, 70, (2), pp. 109131.
    35. 35)
      • 35. Appleton, B., Talbot, H.: ‘Globally minimal surfaces by continuous maximal flows’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, pp. 106118.
    36. 36)
      • 36. Fabijanska, A., Goclawski, J.: ‘The segmentation of 3D images using the random walking technique on a randomly created image adjacency graph’, IEEE Trans. Image Process., 2015, 24, (2), pp. 524537.
    37. 37)
      • 37. Grady, L.: ‘Random walks for image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (11), pp. 17681783.
    38. 38)
      • 38. Jopek, L., Babout, L., Janaszewski, M.: ‘A new method to segment X-ray microtomography images of lamellar titanium alloy based on directional filter banks and gray level gradient’, Lect. Notes Comput. Sci. Comput. Vis. Graph., 2012, 7594, pp. 105112.
    39. 39)
      • 39. Pratt, W.K.: ‘Digital image processing’ (Wiley, Hoboken, 2007).
    40. 40)
      • 40. Lopez-Molina, C., De Baets, B., Bustince, H.: ‘Quantitative error measures for edge detection’, Pattern Recognit., 2013, 46, (4), pp. 11251139.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0842
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0842
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address