Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Estimation of edge displacement against brightness and camera-to-object distance

This study proposes a systematic method to estimate edge displacement (ED) from ground truth edges. To obtain ground truth edges and test edges, a series of target sheets containing the reference regions and brightness contrast regions were designed. Further, the brightness contrast regions were designed to contain foreground and background brightness between which the image edges occur. By varying the foreground brightness (FB), the influence of the FB on the edge locations was tested. Moreover, the influence of camera-to-object distance on the edge locations was tested. A simple least-squares method using slope profiles and a slope-based weighting scheme is proposed for calculating the edges occurring in contrast regions with subpixel accuracy. The experiment results revealed that a bright foreground moves the edge location towards the dark side of the edges in the range of 0–0.6 pixels with strong relationships between the FB and magnitude of ED.

References

    1. 1)
      • 25. Shan, Y., Boon, G.W.: ‘Sub-pixel location of edges with non-uniform blurring: a finite closed-form approach’, Image Vis. Comput., 2000, 18, pp. 10151023.
    2. 2)
      • 7. Kim, J., Lee, S.: ‘Extracting major lines by recruiting zero-threshold Canny edge links along Sobel highlights’, IEEE Trans. Signal Process. Lett., 2015, 22, (10), pp. 16891692.
    3. 3)
      • 23. Tabatabai, A., Mitchell, R.: ‘Edge location to subpixel values in digital imagery’, IEEE Trans. Pattern Anal. Mach. Intell., 1984, PAMI-6, (2), pp. 188201.
    4. 4)
      • 37. Seo, S.: ‘Comparison of edge localisation performance of moment-based operators using target image data’, Korean J. Remote Sens., 2016, 32, (1), pp. 1324.
    5. 5)
      • 4. Basu, M.: ‘Gaussian-based edge-detection methods – a survey’, IEEE Trans. Syst. Man Cybern., 2002, 32, (3), pp. 252260.
    6. 6)
      • 13. Mouats, T., Aouf, N., Sappa, A., et al: ‘Multispectral stereo odometry’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (3), pp. 12101224.
    7. 7)
      • 28. Sun, Q., Hou, Y., Tan, Q., et al: ‘A robust edge detection method with sub-pixel accuracy’, Optik, 2014, 125, pp. 34493453.
    8. 8)
      • 11. Swaminathan, A., Ramapackiyam, S.: ‘Edge detection for illumination varying images using wavelet similarity’, IET Image Process., 2014, 8, (5), pp. 261268.
    9. 9)
      • 14. Ttofis, C., Kyrkou, C., Theocharides, T.: ‘A low-cost real-time embedded stereo vision system for accurate disparity estimation based on guided image filtering’, IEEE Trans. Comput., 2016, 65, (9), pp. 26782693.
    10. 10)
      • 36. Lopez-Molina, C., De Baets, B., Bustince, H.: ‘Quantitative error measures for edge detection’, Pattern Recognit., 2013, 46, pp. 11251139.
    11. 11)
      • 26. Cheng, S.-C., Wu, T.-L.: ‘Subpixel edge detection of color images by principal axis analysis and moment-preserving principle’, Pattern Recognit., 2005, 38, pp. 527537.
    12. 12)
      • 2. Lindeberg, T.: ‘Edge detection and ridge detection with automatic scale selection’, Int. J. Comput. Vis., 1998, 30, (2), pp. 117154.
    13. 13)
      • 9. Xu, Q., Varadarajan, S., Chakrabarti, C., et al: ‘A distributed Canny edge detector: algorithm and FPGA implementation’, IEEE Trans. Image Process., 2014, 23, (7), pp. 29442960.
    14. 14)
      • 27. Da, F., Zhang, H.: ‘Sub-pixel edge detection based on an improved moment’, Image Vis. Comput., 2010, 28, pp. 16451658.
    15. 15)
      • 35. Staunton, R.C.: ‘Measuring image edge detector accuracy using realistically simulated edges’, IET Electron. Lett., 1997, 33, (24), pp. 20312032.
    16. 16)
      • 22. Mahmoudzadeh, E., Zekri, M., Montazeri, M., et al: ‘Directional SUSAN image boundary detection of breast thermogram’, IET Image Process., 2016, 10, (7), pp. 552560.
    17. 17)
      • 10. Possa, P., Mahmoudi, S., Harb, N., et al: ‘A multi-resolution FPGA-based architecture for real-time edge and corner detection’, IEEE Trans. Comput., 2014, 63, (10), pp. 23762388.
    18. 18)
      • 6. Gioi, G., Jakubowicz, J., Morel, J., et al: ‘LSD: a fast line segment detector with a false detection control’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (4), pp. 722732.
    19. 19)
      • 1. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, PAMI-8, (6), pp. 679698.
    20. 20)
      • 5. Papari, G., Petkov, N.: ‘Edge and line oriented contour detection: state of the art’, Image Vis. Comput., 2011, 29, pp. 79103.
    21. 21)
      • 30. Hagara, M., Kulla, P.: ‘Edge detection with sub-pixel accuracy based on approximation of edge with Erf function’, Radioengineering, 2011, 20, (2), pp. 516524.
    22. 22)
      • 18. Teuliere, C., Marchand, E., Eck, L.: ‘3-D model-based tracking for UAV indoor localisation’, IEEE Trans. Cybern., 2015, 45, (5), pp. 869879.
    23. 23)
      • 24. Lyvers, E.P., Mitchell, O.R., Akey, M.L., et al: ‘Subpixel measurements using a moment-based edge operator’, IEEE Trans. Pattern Anal. Mach. Intell., 1989, 11, (12), pp. 12931309.
    24. 24)
      • 3. Ziou, D., Tabbone, S.: ‘Edge detection techniques – an overview’, Int. J. Pattern Recognit. Image Anal., 1998, 8, pp. 537559.
    25. 25)
      • 17. Lee, S., Kang, M., Uhm, K., et al: ‘An edge-guided image interpolation method using Taylor series approximation’, IEEE Trans. Consum. Electron., 2016, 62, (2), pp. 159165.
    26. 26)
      • 12. Morago, B., Bui, G., Duan, Y.: ‘An ensemble approach to image matching using contextual features’, IEEE Trans. Image Process., 2015, 24, (11), pp. 44744487.
    27. 27)
      • 39. Schaffrin, B.: ‘Adjustment computations’, Lecture notes, Ohio State University, 1999.
    28. 28)
      • 8. Lei, T., Fan, Y., Wang, Y.: ‘Colour edge detection based on the fusion of hue component and principal component analysis’, IET Image Process.., 2014, 8, (1), pp. 4455.
    29. 29)
      • 29. Ye, J., Fu, G., Poudel, U.P.: ‘High-accuracy edge detection with blurred edge model’, Image Vis. Comput., 2005, 23, pp. 453467.
    30. 30)
      • 38. ‘Hessian normal form’. Available at http://mathworld.wolfram.com/HessianNormalForm.html, accessed September 2016.
    31. 31)
      • 20. Saheba, S., Upadhyaya, T., Sharma, R.: ‘Lunar surface crater topology generation using adaptive edge detection algorithm’, IET Image Process., 2016, 10, (9), pp. 657661.
    32. 32)
      • 32. Steger, C.: ‘An unbiased detector of curvilinear structures’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (2), pp. 113125.
    33. 33)
      • 33. Trujillo-Pino, A., Krissian, K., Aleman-Flores, M., et alAccurate subpixel edge location based on partial area effect’, Image Vis. Comput., 2013, 31, pp. 7290.
    34. 34)
      • 31. Chen, P., Chen, F., Han, Y., et al: ‘Sub-pixel dimensional measurement with logistic edge model’, Optik, 2014, 125, pp. 20762080.
    35. 35)
      • 21. Ni, Z., Ma, L., Zeng, H., et al: ‘Screen content image quality assessment using edge model’. ICIP 2016, 2016, pp. 8185.
    36. 36)
      • 19. Yin, J., Li, H., Jia, X.: ‘Crater detection based on gist features’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (1), pp. 2329.
    37. 37)
      • 15. Xiang, S., Yu, L., Chen, C.: ‘No-reference depth assessment based on edge misalignment errors for T + D images’, IEEE Trans. Image Process., 2016, 25, (3), pp. 14791494.
    38. 38)
      • 34. Heath, M., Sarkar, S., Sanocki, T., et al: ‘A robust visual method for assessing the relative performance of edge-detection algorithms’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (12), pp. 13381359.
    39. 39)
      • 16. Kim, Y., Oh, C., Sohn, K.: ‘Edge-aware image smoothing using commute time distances’. ICIP 2016, 2016, pp. 33043308.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0796
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0796
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address