http://iet.metastore.ingenta.com
1887

Sparse PDE for SAR image speckle suppression

Sparse PDE for SAR image speckle suppression

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Speckle suppression is extremely important for understanding and utilising synthetic aperture radar (SAR) images, while the emphasis of the traditional methods for speckle suppression is usually focused on removing the noise instead of keeping the scattering character of imaging objects, which has caused serious interference to the subsequent applications of SAR images. The authors aim to develop sparse partial differential equation (PDE) for speckle suppression of SAR image, where the PDE model is associated with the sparse prior of objects and the statistical property of speckle. The PDE model has been proved to have the ability of denoising and edge-preserving by proper design, and the sparse prior of the point- and line-like objects on SAR images has been also illustrated, both of which help for keeping the scattering characters. To solve the proposed sparse PDE model, a numerical algorithm is designed and the sparse constraint is realised in each step of the diffusion process. In experiments, several real SAR images are utilised to validate the performance of the proposed method.

References

    1. 1)
      • 1. Xiong, W., Cao, L., Jiang, J.: ‘A multiscale kernel approach to speckle suppression for SAR images’. Asian-Pacific Conf. on Synthetic Aperture Radar, Xi'an, China, October 2009, pp. 10841087.
    2. 2)
      • 2. Maryam, A., Hamidreza, A., Alireza, M.: ‘Speckle suppression in SAR images using 2-D GARCH model’, IEEE Trans Image Process., 2009, 18, (2), pp. 250259.
    3. 3)
      • 3. Dong, Y., Milne, A.K., Forster, B.C.: ‘Toward edge sharping: a SAR speckle filtering algorithm’, IEEE Trans. Geosci. Remote Sens., 2001, 39, (4), pp. 851863.
    4. 4)
      • 4. Dong, Y., Milne, A.K., Forster, B.C.: ‘A review of SAR speckle filters: texture restoration and preservation’. Geoscience and Remote Sensing Symp., Honolulu, HI, 2000, vol. 2, pp. 633635.
    5. 5)
      • 5. Gleich, D., Datcu, M.: ‘Gauss-Markov model for wavelet-based SAR image despeckling’, IEEE Signal Process. Lett., 2006, 13, pp. 365368.
    6. 6)
      • 6. Nandhini, G., Saraswathy, C.: ‘Speckle suppression of SAR image based on curvelet and dual tree complex wavelet transform’. Int. Conf. on Information Communication and Embedded Systems, Tamilnadu, India, 2013, pp. 650654.
    7. 7)
      • 7. Shen, C., Pi, L., Peng, Y., et al: ‘Varitional-based speckle noise removal of SAR imagery’. IEEE Int. Geoscience and Remote Sensing Symp., 2007, pp. 532535.
    8. 8)
      • 8. Woo, H., Yun, S.: ‘Alternating minimization algorithm for speckle reduction with a shifting technique’, IEEE Trans. Image Process., 2012, 21, (4), pp. 17011714.
    9. 9)
      • 9. Feng, W., Lei, H., Gao, Y.: ‘Speckle reduction via higher order total variation approach’, IEEE Trans. Image Process., 2014, 23, (4), pp. 18311843.
    10. 10)
      • 10. Chan, T., Esedoglu, S., Park, F.: ‘Total variation image restoration: overview and recent developments’, in ‘Handbook of mathematical models in computer and vision’ (Spring-Verlag New York Inc, 2005).
    11. 11)
      • 11. Zeng, W., Lu, X., Tan, X.: ‘Non-linear fourth-order telegraph-diffusion equation for noise removing’, IET Image Process., 2013, 7, (4), pp. 335342.
    12. 12)
      • 12. Keikhosravi, A., Hashemi-Beremjabad, S.: ‘Ultrasound medical image speckle reduction using fourth-order partial differential equation’. 7th Iranian Conf. on Machine Vision and Image Processing, Tehran, Iran, 2011, pp. 15.
    13. 13)
      • 13. Gupta, D., Anand, R.S., Tyagi, B.: ‘Speckle filtering of ultrasound images using a modified non-linear diffusion model in non-subsampled shearlet domain’, IET Image Process., 2014, 9, (2), pp. 107117.
    14. 14)
      • 14. Bhateja, V., Tripathi, A., Gupta, A., et al: ‘Speckle suppression in SAR images employing modified anisotropic diffusion filtering in wavelet domain for environment monitoring’, Measurement, 2015, 74, pp. 246254.
    15. 15)
      • 15. Ma, X., Shen, H., Zhang, L., et al: ‘Adaptive anisotropic diffusion method for polarimetric SAR speckle filtering’, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2015, 8, (3), pp. 10411050.
    16. 16)
      • 16. Touzi, R.: ‘A review of speckle filtering in the context of estimation theory’, IEEE Trans. Geosci. Remote Sens., 2002, 40, (11), pp. 23922404.
    17. 17)
      • 17. Argenti, F., Bianchi, T., Lapini, A., et al: ‘Fast MAP despeckling based on Laplacian-Gaussian modeling of wavelet coefficients’, IEEE Geosci. Remote Sens., 2012, 9, (1), pp. 1217.
    18. 18)
      • 18. Jennifer, R.J., Chithra, M.S.: ‘Bayesian denoising of ultrasound images using heavy-tailed Levy distribution’, IET Image Process., 2015, 9, (4), pp. 338345.
    19. 19)
      • 19. Rajabi, H., Zirak, A.: ‘Speckle noise reduction and motion artifact correction based on modified statistical parameters estimation in OCT images’, Biomed. Phys. Eng. Express, 2016, 2, (3), p. 035012.
    20. 20)
      • 20. Pierrick, C., Pierre, H., Charies, K., et al: ‘Nonlocal means-based speckle filtering for ultrasound images’, IEEE Trans. Image Process., 2009, 18, (10), pp. 22212229.
    21. 21)
      • 21. Zhong, H., Li, Y., Jiao, L.: ‘Bayesian nonlocal means filter for SAR image despeckling’. Asian-pacific Conf. on Synthetic Aperture Radar, Xi'an, China, October 2009, pp. 10961099.
    22. 22)
      • 22. Deledalle, C.A., Denis, L., Poggi, G., et al: ‘Exploiting patch similarity for SAR image processing: the nonlocal paradigm’, IEEE Signal Process. Mag., 2014, 31, (4), pp. 6978.
    23. 23)
      • 23. Daubechies, I., Runborg, O., Zou, J.: ‘A sparse spectral method for homogenization multiscale problems’, SIAM J. Multiscale Model. Simul., 2007, 6, (3), pp. 711740.
    24. 24)
      • 24. Jokar, S., Mehrmann, V., Pfetsch, M.E., et al: ‘Sparse approximation solution of partial differential equation’, Appl. Numer. Math., 2010, 60, (4), pp. 452472.
    25. 25)
      • 25. Cottet, G.H., Ayyadi, M.E.: ‘Nonlinear PDE operators with memory terms for image processing’. Int. Conf. on Image Processing, Lausanne, Switzerland, 1996, vol. 1, pp. 481483.
    26. 26)
      • 26. Catte, F., Lions, P.L., Morel, J.M., et al: ‘Image selective smoothing and edge detection by nonlinear diffusion’, SIAM J. Numer. Anal., 1992, 29, (1), pp. 845866.
    27. 27)
      • 27. Li, H., Du, H., Mei, W.: ‘A speckle suppression SAR imaging method based compressive sensing’. Int. Congress on Image and Signal Processing, Chongqing, China, 2012, pp. 283287.
    28. 28)
      • 28. Baraniuk, G.R.: ‘Compressive sensing’, IEEE Signal Process. Mag., 2007, 24, (4), pp. 118121.
    29. 29)
      • 29. Candes, E.J., Wakin, M.B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 2130.
    30. 30)
      • 30. Graff, C.G., Sidky, E.Y.: ‘Compressive sensing in medical imaging’, Appl. Opt., 2015, 54, (8), pp. C23C44.
    31. 31)
      • 31. Baselice, F., Pascazio, V.: ‘A new application of compressive sensing in MRI’, Med. Imaging Image Process., 2014, 9034, (1), pp. 255275.
    32. 32)
      • 32. Papanicolopoulos, C.D., Blair, W.D., Sherman, D.L., et al: ‘Use of Rician distribution for modeling aspect-dependent RCS amplitude and scintillation’. IEEE Radar Conf., Waltham, USA, 2007, pp. 218223.
    33. 33)
      • 33. Gueven, H.E., Cetin, M.: ‘An augmented Lagrangian method for sparse SAR imaging’. European Conf. on Synthetic Aperture Radar, Berlin, Germany, 2014, pp. 14.
    34. 34)
      • 34. Zeng, J.S., Fang, J.: ‘Sparse SAR imaging based on L1/2 regularization’, Sci. China Inf. Sci., 2012, 55, (8), pp. 17551775.
    35. 35)
      • 35. Zweig, G.: ‘Super-resolution Fourier transforms by optimization and ISAR imaging’, Radar Sonar Navig., 2003, 150, (4), pp. 247252.
    36. 36)
      • 36. Charles, F.: ‘Introduction to the calculus of variations’ (Harvard University Press, 1917, xii), pp. 4759.
    37. 37)
      • 37. Perona, P., Malik, J.: ‘Scale-space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (7), pp. 629639.
    38. 38)
      • 38. Weickert, J.: ‘A review of nonlinear diffusion filtering’. 1999 (LNCS, 1252), pp. 128.
    39. 39)
      • 39. Chambolle, A.: ‘Partial differential equations and image processing’. IEEE Int. Conf. on Image Processing, Austin, USA, 1994, pp. 1620.
    40. 40)
      • 40. Kong, Y.: ‘SAR images processing based on Gibbs-MRF and connected clustering’. Int. Joint Conf. on Computational Science and Optimization, Beijing, China, 2009, vol. 1, pp. 896898.
    41. 41)
      • 41. Puga, J.L., Krzywinski, M., Altman, N.: ‘Bayes’ theorem’, Nat. Methods, 2015, 12, (4), pp. 277278.
    42. 42)
      • 42. Rubinstein, R., Peleg, T., Elad, M.: ‘Analysis K-SVD: a dictionary-learning algorithm for the analysis sparse model’, IEEE Trans. Signal Process., 2013, 61, (3), pp. 661677.
    43. 43)
      • 43. Azimi-Sadjadi, M.R., Kopacz, J., Klausner, N.: ‘K-SVD dictionary learning using a fast OMP with applications’. IEEE Int. Conf. on Image Processing, Paris, France, 2014, pp. 15991603.
    44. 44)
      • 44. Wen, Z., Yin, W., Goldfarb, D., et al: ‘A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation’, SIAM J. Sci. Comput., 2010, 32, (4), pp. 18321857.
    45. 45)
      • 45. Rodriguez, P.: ‘Total variation regularization algorithms for images corrupted with different noise models: a review’, J. Electr. Comput. Eng., 2013, pp. 118, DOI: 10.1155/2013/217021.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0769
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0769
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address