http://iet.metastore.ingenta.com
1887

Image denoising using generalised Cauchy filter

Image denoising using generalised Cauchy filter

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In many image processing analysis, it is important to significantly reduce the noise level. This study aims at introducing an efficient method for this purpose based on generalised Cauchy (GC) distribution. Therefore, some characteristics of GC distribution is considered. In particular, the characteristic function of a GC distribution is derived by using the theory of positive definite densities and utilising the density of a GC random variable as the characteristic function of a convolution of two generalised non-symmetric Linnik variables. Further, GC distribution is considered as a filter and in the proposed method for image noise reduction the optimal parameters of GC filter is defined by using the particle swarm optimisation. The proposed method is applied to different types of noisy images and the obtained results are compared with four state-of-the-art denoising algorithms. Experimental results confirm that their method could significantly reduce the noise effect.

References

    1. 1)
      • 1. Chatterjee, P., Milanfar, P.: ‘Patch-based near-optimal image denoising’, IEEE Trans. Image Process., 2012, 21, (4), pp. 16351649.
    2. 2)
      • 2. Portilla, J., Strela, V., Wainwright, M.J., et al: ‘Image denoising using scale mixtures of Gaussians in the wavelet domain’, IEEE Trans. Image Process., 2003, 12, (11), pp. 13381351.
    3. 3)
      • 3. Pizurica, A., Philips, W.: ‘Estimating the probability of the presence of a signal of interest in multiresolution single-and multiband image denoising’, IEEE Trans. Image Process., 2006, 15, (3), pp. 654665.
    4. 4)
      • 4. Sendur, L., Selesnick, I.W.: ‘Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency’, IEEE Trans. Signal Process., 2002, 50, (11), pp. 27442756.
    5. 5)
      • 5. Luisier, F., Blu, T., Unser, M., et al: ‘A new sure approach to image denoising: interscale orthonormal wavelet thresholding’, IEEE Trans. Image Process., 2007, 16, (3), pp. 593606.
    6. 6)
      • 6. Blu, T., Luisier, F.: ‘The sure-let approach to image denoising’, IEEE Trans. Image Process., 2007, 16, (11), pp. 27782786.
    7. 7)
      • 7. Buades, A., Coll, B., Morel, J.-M.: ‘A review of image denoising algorithms, with a new one’, Multiscale Model. Simul., 2005, 4, (2), pp. 490530.
    8. 8)
      • 8. Xiong, B., Yin, Z.: ‘A universal denoising framework with a new impulse detector and nonlocal means’, IEEE Trans. Image Process., 2012, 21, (4), pp. 16631675.
    9. 9)
      • 9. Dabov, A., Katkovnik, V., Egiazarian, K.: ‘Image denoising by sparse 3D transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (9), pp. 20802095.
    10. 10)
      • 10. Dugad, R., Ahuja, N.: ‘Video denoising by combining Kalman and wiener estimates in: image process’. ICIP 99, Proc. Int. Conf. IEEE, 1999, vol. 4, pp. 152156.
    11. 11)
      • 11. Miao, Z., Jiang, X.: ‘Weighted iterative truncated mean filter’, IEEE Trans. Signal Process., 2013, 61, (16), pp. 41494160.
    12. 12)
      • 12. Ojo, O.A., Kwaaitaal-Spassova, T.G.: ‘An algorithm for integrated noise reduction and sharpness enhancement’, IEEE Trans. Consum. Electron., 2000, 46, (3), pp. 474480.
    13. 13)
      • 13. Rieder, P., Scheffler, G.: ‘New concepts on denoising and sharpening of video signals’, IEEE Trans. Consum. Electron, 2001, 47, (3), pp. 666671.
    14. 14)
      • 14. Gonzalez, J.G., Arce, G.R.: ‘Optimality of the myriad filter in practical impulsive-noise environments’, IEEE Trans. Signal Process., 2001, 49, (2), pp. 438441.
    15. 15)
      • 15. Núñez, R.C., Gonzalez, J.G., Arce, G.R., et al: ‘Fast and accurate computation of the myriad filter via branch-and-bound search’, IEEE Trans. Signal Process., 2008, 56, (7), pp. 33403346.
    16. 16)
      • 16. Burian, A., Kuosmanen, P.: ‘Tuning the smoothness of the recursive median filter’, IEEE Trans. Signal Process., 2002, 50, (7), pp. 16311639.
    17. 17)
      • 17. Rider, P.R.: ‘Generalized Cauchy distributions’, Ann. Ins. Stat. Math., 1957, 9, (1), pp. 215223.
    18. 18)
      • 18. Arce, G.R.: ‘Nonlinear signal processing: a statistical approach’ (John Wiley & Sons, 2005).
    19. 19)
      • 19. Aysal, T.C., Barner, K.E.: ‘Meridian filtering for robust signal processing’, IEEE Trans. Signal Process., 2007, 55, (8), pp. 39493962.
    20. 20)
      • 20. Linnik, Y.V.: ‘Linear forms and statistical criteria, i, ii’, Selected Trans. Math. Stat. Probab., 1953, 3, pp. 4190.
    21. 21)
      • 21. Anderson, D.N., Arnold, B.C.: ‘Linnik distributions and processes’, J. Appl. Probab., 1993, 30, (2), pp. 330340.
    22. 22)
      • 22. Kozubowski, T.J.: ‘The inner characterization of geometric stable laws’, Stat. Decisions. Int. J. Stochastic Method Mod., 1994, 12, (3), pp. 307322.
    23. 23)
      • 23. Mittnik, S., Rachev, S.T.: ‘Alternative multivariate stable distributions and their applications to financial modeling in: stable processes and related topics’ (Springer, 1991), pp. 107119.
    24. 24)
      • 24. Mittnik, S., Rachev, S.T.: ‘Modeling asset returns with alternative stable distributions’, Econ. Rev., 1993, 12, (3), pp. 261330.
    25. 25)
      • 25. Baringhaus, L., Grübel, R.: ‘On a class of characterization problems for random convex combinations’, Ann. Inst. Stat. Math., 1997, 49, (3), pp. 555567.
    26. 26)
      • 26. Rossberg, H.: ‘Positiv definite verteilungsdichten’ (Akademie-Verlag, Berlin, 1991).
    27. 27)
      • 27. Rossberg, H.J.: ‘Positive definite probability densities’, Theory Probab Appl., 1991, 35, (1), pp. 169174.
    28. 28)
      • 28. Kalluri, S., Arce, G.R.: ‘Robust frequency-selective filtering using weighted myriad filters admitting real-valued weights’, IEEE Trans. Signal Process., 2001, 49, (11), pp. 27212733.
    29. 29)
      • 29. Forbes, C., Evans, M., Hastings, N., et al: ‘Statistical distributions’ (John Wiley & Sons, 2011).
    30. 30)
      • 30. Kozubowski, T.J.: ‘Exponential mixture representation of geometric stable distributions’, Ann. Inst. Stat. Math., 2000, 52, (2), pp. 231238.
    31. 31)
      • 31. Soltani, A., Tafakori, L.: ‘A class of continuous Kernels and Cauchy type heavy tail distributions’, Stat. Probab. Lett., 2013, 83, (4), pp. 10181027.
    32. 32)
      • 32. Milanfar, P.: ‘A tour of modern image filtering: new insights and methods, both practical and theoretical’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 106128.
    33. 33)
      • 33. Easley, G.R., Labate, D.: ‘Multiscale analysis for multivariate data’ (Birkhäuser Boston, 2012).
    34. 34)
      • 34. Miller, J., Thomas, J.: ‘Detectors for discrete-time signals in non-Gaussian noise’, IEEE Trans. Inf. Theory, 1972, 18, (2), pp. 241250.
    35. 35)
      • 35. Liu, X., Tanaka, M., Okutomi, M.: ‘Single-image noise level estimation for blind denoising’, IEEE Trans. Image Process., 2013, 22, (12), pp. 52265237.
    36. 36)
      • 36. Ou, C., Lin, W.: ‘Comparison between PSO and GA for parameters optimization of PID controller’. Int. Conf. Mechatronics and Automation, 2006.
    37. 37)
      • 37. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. IEEE Int. Conf. Neural Networks, 1995, pp. 19421948.
    38. 38)
      • 38. Clerc, M., Kennedy, J.: ‘The particle swarm-explosion, stability, and convergence in a multidimensional complex space’, IEEE Trans. Evol. Comput., 2002, 6, (1), pp. 5873.
    39. 39)
      • 39. Zhan, Z.-H., Zhang, J., Li, Y., et al: ‘Adaptive particle swarm optimization’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2009, 39, (6), pp. 13621381.
    40. 40)
      • 40. Jansen, P.W., Perez, R.E.: ‘Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach’, Comput. Struct, 2011, 89, (13), pp. 13521366.
    41. 41)
      • 41. Grahn, H.F., Geladi, P.: ‘Techniques and applications of hyperspectral image analysis’ (John Wiley and Sons Ltd, Chichester, 2007).
    42. 42)
      • 42. Goodenough, D.G., Han, T.: ‘Reducing noise in hyperspectral data – a nonlinear data series analysis approach’. IEEE WHISPERS'09. First Workshop on Hyperspectral Image Signal Processing, Grenoble, France, 2009, pp. 14.
    43. 43)
      • 43. Makitalo, M., Foi, A.: ‘Noise parameter mismatch in variance stabilization, with an application to Poisson-Gaussian noise estimation’, IEEE Trans. Image Process., 2014, 12, (23), pp. 53485359.
    44. 44)
      • 44. Makitalo, M., Foi, A.: ‘Optimal inversion of the Anscombe transformation in low-count Poisson image denoising’, IEEE Trans. Image Process., 2011, 20, (1), pp. 99109.
    45. 45)
      • 45. Makitalo, M., Foi, A., Katkovnik, V., et al: ‘Practical Poissonian-Gaussian noise modeling and fitting for single-image rawdata’, IEEE Trans. Image Process., 2008, 17, (10), pp. 17371754.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0554
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0554
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address