Fast coding algorithm for HEVC based on video contents

Fast coding algorithm for HEVC based on video contents

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High efficiency video coding (HEVC) achieves higher coding efficiency than previous standards but introduces a large computational complexity. Because HEVC adopted some new advanced tools and the most prominent one is the flexible hierarchical coding structures which include coding unit (CU), prediction unit (PU), transform unit (TU). All of those units must be test through rate-distortion optimisation. Since the CU is highly content dependent it is not efficient to test all the modes. In this study, the authors propose a fast coding algorithm for HEVC based on video contents. The authors statistically analysis the features of video contents from three aspects, the pixel gradient, the block mean value, and the block variance of CU. Then, jointly use these features with the CU depth levels and the prediction modes of spatiotemporal adjacent CUs to realise fast CU depth level decision and fast prediction mode decision. The experimental results show that the proposed algorithm can save 58.9 and 57.6% computational complexity on average with only average 1.8 and 1.9% bitrate losses under ‘random access, main’ and ‘low-delay, main’ conditions, respectively.


    1. 1)
      • 1. Sullivan, G.J., Ohm, J., Han, W.-J., et al: ‘Overview of the high efficiency video coding (HEVC) standard’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 16491668.
    2. 2)
      • 2. Bossen, F., Bross, B., Suhring, K., et al: ‘HEVC complexity and implementation analysis’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 16851696.
    3. 3)
      • 3. Zhang, H., Ma, Z.: ‘Fast intra mode decision for high efficiency video coding (HEVC)’, IEEE Trans. Circuits Syst. Video Technol., 2014, 24, (4), pp. 660668.
    4. 4)
      • 4. Lim, K., Lee, J., Kim, S., et al: ‘Fast PU skip and split termination algorithm for HEVC intra prediction’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (8), pp. 13351346.
    5. 5)
      • 5. Shen, L., Zhang, Z., An, P.: ‘Fast CU size decision and mode decision algorithm for HEVC intra coding’, IEEE Transactions on Consumer Electronics, 2013, 59, (1), pp. 207213.
    6. 6)
      • 6. Shen, L., Zhang, Z., Liu, Z.: ‘Effective CU size decision for HEVC intracoding’, IEEE Trans. Image Process., 2014, 23, (10), pp. 42324241.
    7. 7)
      • 7. Kang, J., Choi, H., Kim, J.-G.: ‘Fast transform unit decision for HEVC’. Image and Signal Processing (CISP), December 2013, pp. 2630.
    8. 8)
      • 8. Shen, X., Yu, L., Chen, J.: ‘Fast coding unit size selection for HEVC based on Bayesian decision rule’. Picture coding symposium (PCS), May 2012, pp. 453456.
    9. 9)
      • 9. Lee, J., Kim, S., Lim, K., et al: ‘A fast CU size decision algorithm for HEVC’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (3), pp. 411421.
    10. 10)
      • 10. Tan, H.L., Ko, C.C., Rahardja, S.: ‘Fast coding quad-tree decisions using prediction residuals statistics for high efficiency video coding (HEVC)’, IEEE Trans. Broadcast., 2016, 62, (1), pp. 128133.
    11. 11)
      • 11. Kibeya, H., Belghith, F., Ayed, M.A.B., et al: ‘Fast coding unit selection and motion estimation algorithm based on early detection of zero block quantified transform coefficients for high-efficiency video coding standard’, IET Image Process., 2016, 10, (5), pp. 371380.
    12. 12)
      • 12. Wu, J., Guo, B., Hou, J., et al: ‘Fast CU encoding schemes based on merge mode and motion estimation for HEVC inter prediction’, KSII Trans. Internet Inf. Syst., 2016, 10, (3), pp. 11951211.
    13. 13)
      • 13. Shen, L., Liu, Z., Zhang, X., et al: ‘An effective CU size decision method for HEVC encoders’, IEEE Trans. Multimedia, 2013, 15, (2), pp. 465470.
    14. 14)
      • 14. Shen, L., Zhang, Z., Liu, Z.: ‘Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatio-temporal correlations’, IEEE Trans. Circuits Syst. Video Technol., 2014, 24, (10), pp. 17091722.
    15. 15)
      • 15. Lee, A., Jun, D., Kim, J., et al: ‘Efficient inter prediction mode decision method for fast motion estimation in high efficiency video coding’, ETRI J., 2014, 36, (4), pp. 528536.
    16. 16)
      • 16. Ahn, S., Lee, B., Kim, M.: ‘A novel fast CU encoding scheme based on spatiotemporal encoding parameters for HEVC inter coding’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (3), pp. 422435.
    17. 17)
      • 17. Zhou, C., Zhou, F., Chen, Y.: ‘Spatio-temporal correlation-based fast coding unit depth decision for high efficiency video coding’, J. Electron. Imag., 2013, 22, (4), p. 043001.
    18. 18)
      • 18. Gao, Y., Liu, P., Wu, Y., et al: ‘Fast coding unit encoding mechanism for low complexity video coding’, PLoS ONE, 2016, 11, (3), pp. 114.
    19. 19)
      • 19. Xiong, J., Li, H., Wu, Q., et al: ‘A fast HEVC inter CU selection method based on pyramid motion divergence’, IEEE Trans. Multimedia, 2014, 16, (2), pp. 559564.
    20. 20)
      • 20. Correa, G., Assuncao, P., Agostini, L.: ‘Fast coding tree structure decision for HEVC based on classification trees’, Analog. Integr. Circular Signal Process., 2016, 87, (2), pp. 129139.
    21. 21)
      • 21. Bossen, F.: ‘Common HM test conditions and software reference configurations’. Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Document: JCTVC-K1100, 12th Meeting, Geneva, CH, 14–23 January 2013.
    22. 22)
      • 22. Bjontegaard, G.: ‘Calculation of average PSNR difference between RD-curves’. VCEG-M33, Austin, TX, USA, April 2001.

Related content

This is a required field
Please enter a valid email address