http://iet.metastore.ingenta.com
1887

Optimised blind image watermarking method based on firefly algorithm in DWT-QR transform domain

Optimised blind image watermarking method based on firefly algorithm in DWT-QR transform domain

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Firefly algorithm (FA) is one of the newly developed nature inspired optimisation algorithm, inspired by the flashing behaviour of fireflies that a firefly tends to be attracted towards other fireflies with higher brightness. Thus FA has two advantages: local attractions and automatic regrouping. Based on these good properties, a novel image watermarking method based on FA in discrete wavelet transform (DWT)-QR transform domain is proposed in this study. Structural similarity index measure and bit error rate are used in the objective function to trade-off invisibility and robustness. The experiment results show that the proposed image watermarking method not only meet the need of invisibility, but also has better or comparable robustness as compared with some related methods.

References

    1. 1)
      • 1. Qi, M., Li, B.Z., Sun, H.F.: ‘Image watermarking via fractional polar harmonic transforms’, J. Electron. Imaging, 2015, 24, (1), pp. 112.
    2. 2)
      • 2. Makbol, N.M., Khoo, B.E., Rassem, T.H.: ‘Block-based discrete wavelet transform-singular value decomposition image watermarking scheme using human visual system characteristics’, IET Image Process., 2016, 10, (1), pp. 3452.
    3. 3)
      • 3. Aherrahrou, N., Tairi, H.: ‘A new robust watermarking scheme based on PDE decomposition’. Computer Systems and Applications (AICCSA), 2013 ACS Int. Conf. on IEEE, 2013, pp. 15.
    4. 4)
      • 4. Papakostas, G.A., Tsougenis, E.D., Koulouriotis, D.E.: ‘Moment-based local image watermarking via genetic optimization’, Appl. Math. Comput., 2014, 227, pp. 222236.
    5. 5)
      • 5. Qi, M., Li, B.Z., Sun, H.: ‘Image watermarking using polar harmonic transform with parameters in SL (2, R)’, Signal Process., Image Commun., 2015, 31, pp. 161173.
    6. 6)
      • 6. Briassouli, A., Strintzis, M.G.: ‘Locally optimum nonlinearities for DCT watermark detection’, IEEE Trans. Image Process, 2004, 13, (12), pp. 16041617.
    7. 7)
      • 7. Lu, W., Lu, H., Chung, F.L.: ‘Feature based robust watermarking using image normalization’, Comput. Electr. Eng., 2010, 36, (1), pp. 218.
    8. 8)
      • 8. Chung, K.L., Yang, W.N., Huang, Y.H., et al: ‘On SVD-based watermarking algorithm’, Appl. Math. Comput., 2007, 188, (1), pp. 5457.
    9. 9)
      • 9. Mohammad, A.A.: ‘A new digital image watermarking scheme based on Schur decomposition’, Multimedia Tools Appl., 2012, 59, (3), pp. 851883.
    10. 10)
      • 10. Naderahmadian, Y., Hosseini-Khayat, S.: ‘Fast and robust watermarking in still images based on QR decomposition’, Multimedia Tools Appl., 2014, 72, (3), pp. 25972618.
    11. 11)
      • 11. Barni, M., Bartolini, F., Piva, A.: ‘Improved wavelet-based watermarking through pixel-wise masking’, IEEE Trans. Image Process., 2001, 10, (5), pp. 783791.
    12. 12)
      • 12. Agarwal, H., Atrey, P.K., Raman, B.: ‘Image watermarking in real oriented wavelet transform domain’, Multimedia Tools Appl., 2015, 74, (23), pp. 1088310921.
    13. 13)
      • 13. Lang, J., Zhang, Z.: ‘Blind digital watermarking method in the fractional Fourier transform domain’, Opt. Lasers Eng., 2014, 53, pp. 112121.
    14. 14)
      • 14. Tang, L.L., Huang, C.T., Pan, J.S., et al: ‘Dual watermarking algorithm based on the fractional Fourier transform’, Multimedia Tools Appl., 2015, 74, (12), pp. 43974413.
    15. 15)
      • 15. Bao, P., Ma, X.: ‘Image adaptive watermarking using wavelet domain singular value decomposition’, IEEE Trans. Circuits Syst. Video Technol., 2005, 15, (1), pp. 96102.
    16. 16)
      • 16. Makbol, N.M., Khoo, B.E.: ‘Robust blind image watermarking scheme based on redundant discrete wavelet transform and singular value decomposition’, AEU-Int. J. Electron. Commun., 2013, 67, (2), pp. 102112.
    17. 17)
      • 17. Mehta, R., Rajpal, N., Vishwakarma, V.P.: ‘LWT-QR decomposition based robust and efficient image watermarking scheme using Lagrangian SVR’, Multimedia Tools Appl., 2016, 75, (7), pp. 41294150.
    18. 18)
      • 18. Muhammad, N., Bibi, N.: ‘Digital image watermarking using partial pivoting lower and upper triangular decomposition into the wavelet domain’, IET Image Process., 2015, 9, (9), pp. 795803.
    19. 19)
      • 19. Ye, X., Chen, X., Deng, M., et al: ‘A SIFT-based DWT-SVD blind watermark method against geometrical attacks’. 2014 7th Int. Congress on. IEEE Image and Signal Processing (CISP), 2014, pp. 323329.
    20. 20)
      • 20. Naderahmadian, Y., Hosseini-Khayat, S.: ‘Fast watermarking based on QR decomposition in wavelet domain’. , 2010 Sixth Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP) IEEE, 2010, pp. 127130.
    21. 21)
      • 21. Jane, O., Elbasi, E.: ‘A new approach of nonblind watermarking methods based on DWT and SVD via LU decomposition’, Turk. J. Electr. Eng. Comput. Sci., 2014, 22, (5), pp. 13541366.
    22. 22)
      • 22. Jahan, R.: ‘Efficient and secure digital image watermarking scheme using DWT-SVD and optimized genetic algorithm based chaotic encryption’, Int. J. Sci. Eng. Technol. Res. (IJSETR), 2013, 2, (10), pp. 19431946.
    23. 23)
      • 23. Aslantas, V., Dogan, A.L., Ozturk, S.: ‘DWT-SVD based image watermarking using particle swarm optimizer’.  2008 IEEE Int. Conf. on IEEE Multimedia and Expo, 2008, pp. 241244.
    24. 24)
      • 24. Tsai, H.H., Jhuang, Y.J., Lai, Y.S.: ‘An SVD-based image watermarking in wavelet domain using SVR and PSO’, Appl. Soft Comput., 2012, 12, (8), pp. 24422453.
    25. 25)
      • 25. Ali, M., Ahn, C.W., Pant, M.: ‘A robust image watermarking technique using SVD and differential evolution in DCT domain’, Optik-Int. J. Light Electron Opt., 2014, 125, (1), pp. 428434.
    26. 26)
      • 26. Ali, M., Ahn, C.W., Siarry, P.: ‘Differential evolution algorithm for the selection of optimal scaling factors in image watermarking’, Eng. Appl. Artif. Intell., 2014, 31, pp. 1526.
    27. 27)
      • 27. Ali, M., Ahn, C.W., Pant, M., et al: ‘An image watermarking scheme in wavelet domain with optimized compensation of singular value decomposition via artificial bee colony’, Inf. Sci., 2015, 301, pp. 4460.
    28. 28)
      • 28. Ansari, I.A., Pant, M., Ahn, C.W.: ‘Robust and false positive free watermarking in IWT domain using SVD and ABC’, Eng. Appl. Artif. Intell., 2016, 49, pp. 114125.
    29. 29)
      • 29. Loukhaoukha, K.: ‘Image watermarking algorithm based on multiobjective ant colony optimization and singular value decomposition in wavelet domain’, J. Optim., 2013, 2013.
    30. 30)
      • 30. Waleed, J., Jun, H.D., Abbas, T., et al: ‘A survey of digital image watermarking optimization based on nature inspired algorithms NIAs’, Int. J. Secur. Appl., 2014, 8, (6), pp. 315334.
    31. 31)
      • 31. Huang, H.C., Chang, F.C., Chen, Y.H., et al: ‘Survey of bio-inspired computing for information hiding’, J. Inf. Hiding Multimedia Signal Process., 2015, 6, (3), pp. 430443.
    32. 32)
      • 32. Yang, X.S.: ‘Firefly algorithm’, Nature-Inspired Metaheuristic Algorithms, 2008, 20, pp. 7990.
    33. 33)
      • 33. Zhang, Y., Wu, L.: ‘A novel method for rigid image registration based on firefly algorithm’, Int. J. Res. Rev. Soft Intell. Comput. (IJRRSIC), 2012, 2, (2), pp. 141146.
    34. 34)
      • 34. Hassanzadeh, T., Vojodi, H., Moghadam, A.M.E.: ‘An image segmentation approach based on maximum variance intra-cluster method and firefly algorithm’. 2011 Seventh Int. Conf. on Natural Computation (ICNC). IEEE, 2011, vol. 3, pp. 18171821.
    35. 35)
      • 35. Kanimozhi, T., Latha, K.: ‘An integrated approach to region based image retrieval using firefly algorithm and support vector machine’, Neurocomputing, 2015, 151, pp. 10991111.
    36. 36)
      • 36. Chen, K., Zhou, Y., Zhang, Z., et al: ‘Multilevel image segmentation based on an improved firefly algorithm’, Math. Probl. Eng., 2016, 2016.
    37. 37)
      • 37. Draa, A., Benayad, Z., Djenna, F.Z.: ‘An opposition-based firefly algorithm for medical image contrast enhancement’, Int. J. Inf. Commun. Technol., 2015, 7, (4–5), pp. 385405.
    38. 38)
      • 38. Ali, M., Ahn, C.W.: ‘Comments on ‘optimized gray-scale image watermarking using DWT-SVD and firefly algorithm’, Expert Syst. Appl., 2015, 42, (5), pp. 23922394.
    39. 39)
      • 39. Mishra, A., Agarwal, C., Sharma, A., et al: ‘Optimized gray-scale image watermarking using DWT-SVD and Firefly Algorithm’, Expert Syst. Appl., 2014, 41, (17), pp. 78587867.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0515
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0515
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address