http://iet.metastore.ingenta.com
1887

access icon openaccess Hybrid NSS features for no-reference image quality assessment

Loading full text...

Full text loading...

/deliver/fulltext/iet-ipr/11/6/IET-IPR.2016.0411.html;jsessionid=eg4r920sda8ca.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-ipr.2016.0411&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Chen, W., Fournier, J., Barkowsky, M., et al: ‘New requirements of subjective video quality assessment methodologies for 3dtv’. Video Processing and Quality Metrics 2010 (VPQM), 2010.
    2. 2)
      • 2. Larson, E.C., Chandler, D.M.: ‘Most apparent distortion: full-reference image quality assessment and the role of strategy’, J. Electron. Imaging, 2010, 19, (1), pp. 011006011006–21.
    3. 3)
      • 3. Liu, L., Liu, B., Huang, H., et al: ‘No-reference image quality assessment based on spatial and spectral entropies’, Signal Process., Image Commun., 2014, 29, (8), pp. 856863.
    4. 4)
      • 4. Liu, L., Dong, H., Huang, H., et al: ‘No-reference image quality assessment in curvelet domain’, Signal Process., Image Commun., 2014, 29, (4), pp. 494505.
    5. 5)
      • 5. Lu, W., Zeng, K., Tao, D., et al: ‘No-reference image quality assessment in contourlet domain’, Neurocomputing, 2010, 73, (4), pp. 784794.
    6. 6)
      • 6. Mittal, A., Moorthy, A.K., Bovik, A.C.: ‘No-reference image quality assessment in the spatial domain’, IEEE Trans. Image Process., 2012, 21, (12), pp. 46954708.
    7. 7)
      • 7. Moorthy, A.K., Bovik, A.C.: ‘A two-step framework for constructing blind image quality indices’, IEEE Signal Process. Lett., 2010, 17, (5), pp. 513516.
    8. 8)
      • 8. Sheikh, H.R., Bovik, A.C., Cormack, L.: ‘No-reference quality assessment using natural scene statistics: Jpeg2000’, IEEE Trans. Image Process., 2005, 14, (11), pp. 19181927.
    9. 9)
      • 9. Zhang, L., Zhang, L., Bovik, A.C.: ‘A feature-enriched completely blind image quality evaluator’, IEEE Trans. Image Process., 2015, 24, (8), pp. 25792591.
    10. 10)
      • 10. Ye, P., Doermann, D.: ‘No-reference image quality assessment using visual codebooks’, IEEE Trans. Image Process., 2012, 21, (7), pp. 31293138.
    11. 11)
      • 11. Ye, P., Kumar, J., Kang, L., et al: ‘Unsupervised feature learning framework for no-reference image quality assessment’. IEEE Conf. Computer Vision Pattern Recognition, RI, USA, June 2012, pp. 10981105.
    12. 12)
      • 12. Kang, L., Ye, P., Li, Y., et al: ‘Convolutional neural networks for no-reference image quality assessment’. Proc. Int. Conf. Computer Vision Pattern Recognition, 2014, pp. 17331740.
    13. 13)
      • 13. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    14. 14)
      • 14. Sheikh, H.R., Bovik, A.C.: ‘Image information and visual quality’, IEEE Trans. Image Process., 2006, 15, (2), pp. 430444.
    15. 15)
      • 15. Zhang, L., Zhang, L., Mou, X., et al: ‘Fsim: a feature similarity index for image quality assessment’, IEEE Trans. Image Process., 2011, 20, (8), pp. 23782386.
    16. 16)
      • 16. Rehman, A., Wang, Z.: ‘Reduced-reference image quality assessment by structural similarity estimation’, IEEE Trans. Image Process., 2012, 21, (8), pp. 33783389.
    17. 17)
      • 17. Tao, D., Li, X., Lu, W., et al: ‘Reduced-reference iqa in contourlet domain’, IEEE Trans. Syst., Man Cybern. B Cybern., 2009, 39, (6), pp. 16231627.
    18. 18)
      • 18. Ruderman, D.L.: ‘The statistics of natural images’, Netw., Comput. Neural Syst., 1994, 5, (4), pp. 517548.
    19. 19)
      • 19. Saad, M.A., Bovik, A.C., Charrier, C.: ‘Blind image quality assessment: A natural scene statistics approach in the dct domain’, IEEE Trans. Image Process., 2012, 21, (8), pp. 33393352.
    20. 20)
      • 20. Moorthy, A.K., Bovik, A.C.: ‘Blind image quality assessment: From natural scene statistics to perceptual quality’, IEEE Trans. Image Process., 2011, 20, (12), pp. 33503364.
    21. 21)
      • 21. Saad, M.A., Bovik, A.C., Charrier, C.: ‘A dct statistics-based blind image quality index’, IEEE Signal Process. Lett., 2010, 17, (6), pp. 583586.
    22. 22)
      • 22. Mittal, A., Soundararajan, R., Bovik, A.C.: ‘Making a completely blind image quality analyzer’, IEEE Signal Process. Lett., 2013, 20, (3), pp. 209212.
    23. 23)
      • 23. Sharifi, K., Leon-Garcia, A.: ‘Estimation of shape parameter for generalized gaussian distributions in subband decompositions of video’, IEEE Trans. Circuits Syst. Video Technol., 1995, 5, (1), pp. 5256.
    24. 24)
      • 24. Coates, A., Ng, A.Y., Lee, H.: ‘An analysis of single-layer networks in unsupervised feature learning’. Int. Conference on Artificial Intelligence and Statistics, 2011, pp. 215223.
    25. 25)
      • 25. Moorthy, A.K., Bovik, A.C.: ‘Visual importance pooling for image quality assessment’, IEEE J. Sel. Top. Signal Process., 2009, 3, (2), pp. 193201.
    26. 26)
      • 26. Yang, J., Yu, K., Gong, Y., et al: ‘Linear spatial pyramid matching using sparse coding for image classification’. IEEE Conf. Computer Vision Pattern Recognition, 2009, pp. 17941801.
    27. 27)
      • 27. Zhang, P., Zhou, W., Wu, L., et al: ‘Som: Semantic obviousness metric for image quality assessment’. Proc. Int. Conf. Computer Vision Pattern Recognition, 2015, pp. 23942402.
    28. 28)
      • 28. Sheikh, H.R., Wang, Z., Cormack, L., et al: ‘Live image quality assessment database release 2’, 2005.
    29. 29)
      • 29. Chang, C.C., Lin, C.J.: ‘Libsvm: a library for support vector machines’, ACM Trans. Intell. Syst. Technol. (TIST), 2011, 2, (3), p. 27.
    30. 30)
      • 30. Larson, E.C., Chandler, D.: ‘Categorical image quality (csiq) database’, 2010. Available at http://vision.okstate.edu/csiq.
    31. 31)
      • 31. Ma, K., Wu, Q., Wang, Z., et al: ‘Group mad competition – a new methodology to compare objective image quality models’, 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0411
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0411
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address