http://iet.metastore.ingenta.com
1887

Multiple Laplacian graph regularised low-rank representation with application to image representation

Multiple Laplacian graph regularised low-rank representation with application to image representation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently, low-rank representation (LRR)-based techniques have manifested remarkable results for data representation. To exploit the latent manifold structure of data, the graph regulariser is incorporated into the model of LRR. However, it is critical to construct an appropriate graph model and set the corresponding parameters. In addition, this procedure is usually time-consuming and proved to be overfitting when using cross validation or discrete grid search. Two novel LRR-based methods, called multiple graph regularised LRR and multiple hypergraph regularised LLR, are proposed to represent the high-dimensional data. To guarantee the smoothness along the estimated manifold, the multiple graph regulariser and the multiple hypergraph regulariser are incorporated into the traditional LRR method, respectively, which results in a unified framework. Moreover, the augmented Lagrange multiplier is adopted to solve the proposed models. Extensive experiments on real image datasets show the effectiveness of the proposed methods.

References

    1. 1)
      • 1. Li, Z., Jiang, W., Meng, H.M.: ‘Fishervioce: a discriminant subspace framework for speaker recognition’. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2010, pp. 45224525.
    2. 2)
      • 2. Wen, X., Shao, L., Xue, Y., et al: ‘A rapid learning algorithm for vehicle classification’, Inf. Sci., 2015, 295, (1), pp. 395406.
    3. 3)
      • 3. Pan, Z., Zhang, Y., Kwong, S.: ‘Efficient motion and disparity estimation optimization for low complexity multiview video coding’, IEEE Trans. Broadcast., 2015, 61, (2), pp. 166176.
    4. 4)
      • 4. Turk, M., Pentland, A.: ‘Eigenfaces for recognition’, J. Cogn. Neurosci., 1991, 3, (1), pp. 7186.
    5. 5)
      • 5. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
    6. 6)
      • 6. Tenenbaum, J.B., de Silva, V., Langford, J.C.: ‘A global geometric framework for nonlinear dimensionality reduction’, Science, 2000, 290, (5500), pp. 23192323.
    7. 7)
      • 7. Roweis, S.T., Saul, L.K.: ‘Nonlinear dimensionality reduction by locally linear embedding’, Science, 2000, 290, (5500), pp. 23232326.
    8. 8)
      • 8. Belkin, M., Niyogi, P.: ‘Laplacian eigenmaps for dimensionality reduction and data representation’, Neural Comput.., 2003, 15, (6), pp. 13731396.
    9. 9)
      • 9. He, X., Yan, S., Hu, Y., et al: ‘Face recognition using Laplacian faces’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (3), pp. 328340.
    10. 10)
      • 10. He, X., Cai, D., Yan, S., et al: ‘Neighborhood preserving embedding’. 2005 IEEE Int. Conf. on Computer Vision (ICCV), 2005, vol. 2, pp. 12081213.
    11. 11)
      • 11. Yan, S., Xu, D., Zhang, B., et al: ‘Graph embedding and extensions: a general framework for dimensionality reduction’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (1), pp. 4051.
    12. 12)
      • 12. Wright, J., Yang, J., Ma., Y., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    13. 13)
      • 13. Elhamifar, E., Vidal, R.: ‘Robust classification using structured sparse representation’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 18731879.
    14. 14)
      • 14. Gao, S., Tsang, I.W.H., Chia, L.T.: ‘Kernel sparse representation for image classification and face recognition’, ‘Computer Vision–ECCV 2010’ (Springer Berlin Heidelberg, 2010), pp. 114.
    15. 15)
      • 15. Qiao, L., Chen, S., Tan, X.: ‘Sparsity preserving projections with applications to face recognition’, Pattern Recognit., 2010, 43, (1), pp. 331341.
    16. 16)
      • 16. Zheng, M., Bu, J., Chen, C., et al: ‘Graph regularized sparse coding for image representation’, IEEE Trans. Image Process., 2011, 20, (5), pp. 13271336.
    17. 17)
      • 17. Gao, S., Tsang, I., Chia, L.: ‘Laplacian sparse coding, hypergraph Laplacian sparse coding, and applications’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (1), pp. 92104.
    18. 18)
      • 18. Jin, T., Yu, Z., Li, L., et al: ‘Multiple graph regularized sparse coding and multiple hypergraph regularized sparse coding for image representation’, Neurocomputing, 2015, 154, pp. 245256.
    19. 19)
      • 19. Liu, G., Lin, Z., Yan, S., et al: ‘Robust recovery of subspace structures by low-rank representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (1), pp. 171184.
    20. 20)
      • 20. Lu, X., Wang, Y., Yuan, Y.: ‘Graph-regularized low-rank representation for descripting of hyperspectral images’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (7), pp. 40094018.
    21. 21)
      • 21. Liu, J., Chen, Y., Zhang, J., et al: ‘Enhancing low-rank subspace clustering by manifold regularization’, IEEE Trans. Image Process., 2014, 23, (9), pp. 40224030.
    22. 22)
      • 22. Liu, G., Yan, S.: ‘Latent low-rank representation for subspace segmentation and feature extraction’. 2011 IEEE Int. Conf. on Computer Vision (ICCV), 2011, pp. 16151622.
    23. 23)
      • 23. Yin, M., Cai, S., Gao, J.: ‘Robust face recognition via double low-rank matrix recovery for feature extraction’. 2013 IEEE Int. Conf. on Image Processing (ICIP), 2013, pp. 37703774.
    24. 24)
      • 24. Yin, M., Gao, J., Lin, Z.: ‘Laplacian regularized low-rank representation and its applications’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 38, (3), pp. 504517.
    25. 25)
      • 25. Geng, B., Tao, D., Xu, C., et al: ‘Ensemble manifold regularization’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (6), pp. 12271233.
    26. 26)
      • 26. Cai, J.F., Candès, E.J., Shen, Z.: ‘A singular value thresholding algorithm for matrix completion’, SIAM J. Optim., 2010, 20, (4), pp. 19561982.
    27. 27)
      • 27. Toh, K.C., Yun, S.: ‘An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems’, Pacific J. Optim., 2010, 6, (615-640), p. 15.
    28. 28)
      • 28. Lin, Z., Chen, M., Ma, Y.: ‘The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices’, arXiv preprint arXiv:1009.5055, 2010.
    29. 29)
      • 29. Cai, D., He, X., Han, J., et al: ‘Graph regularized nonnegative matrix factorization for data representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (8), pp. 15481560.
    30. 30)
      • 30. Lovász, L., Plummer, M.: ‘Matching theory’ (North Holland, Amsterdam, The Netherlands, 1986).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0391
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0391
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address