Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Regularised differentiation for image derivatives

This study investigates a regularised differentiation method to estimate image derivatives. The scheme minimises an integral functional containing an anti-differentiation data discrepancy term and a smoothness regularisation term. When discretised, the Euler–Lagrange necessary conditions for a minimum of the functional yield a large scale sparse system of linear equations, which can be solved efficiently by Jacobi/Gauss–Seidel iterations. The authors investigate the impact of the method in the context of two important problems in computer vision: optical flow and scene flow estimation. Quantitative results, using the Middlebury dataset and other real and synthetic images, show that the authors’ regularised differentiation scheme outperforms standard derivative definitions by smoothed finite differences, which are commonly used in motion analysis. The method can be readily used in various other image analysis problems.

References

    1. 1)
      • 10. Terzopoulos, D.: ‘Regularization of inverse visual problems involving discontinuities’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, 8, (4), pp. 413424.
    2. 2)
      • 1. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson, 2008).
    3. 3)
      • 21. Bay, H., Ess, A., Tuytelaars, T., et al: ‘Speeded-up robust features (surf)’, Comput. Vis. Image Underst., 2008, 110, (3), pp. 346359.
    4. 4)
      • 8. Tappen, M., Freeman, W.T., Adelson, E.H.: ‘Recovering intrinsic images from a single image’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (9), pp. 14591472.
    5. 5)
      • 19. Baker, S., Scharstein, D., Lewis, J., et al: ‘A database and evaluation methodology for optical flow’, Int. J. Comput. Vis., 2011, 92, (1), pp. 131.
    6. 6)
      • 4. Horn, B., Schunk, B.: ‘Determining optical flow’, Artif. Intell., 1981, 17, pp. 185203.
    7. 7)
      • 13. Vogel, C.R.: ‘Computational methods for inverse problems’ (Frontiers in Applied Mathematics, SIAM, 2002).
    8. 8)
      • 17. Forsythe, G., Malcolm, M., Moler, C.: ‘Computer methods for mathematical computations’ (Prentice-Hall, 1977).
    9. 9)
      • 14. Khan, I.R., Ohba, R.: ‘New finite difference formulas for numerical differentiation’, J. Comput. Appl. Math., 2000, 126, (1), pp. 269276.
    10. 10)
      • 16. Ramm, A., Smirnova, A.: ‘On stable numerical differentiation’, Math. Comput., 2001, 70, (235), pp. 11311153.
    11. 11)
      • 7. Periaswamy, S., Farid, H.: ‘Medical image registration with partial data’, Med. Image Anal., 2006, 10, (3), pp. 452464.
    12. 12)
      • 18. Tritsiklis, J.N.: ‘A comparison of Jacobi and Gauss-Seidel parallel iterations’, Appl. Math. Lett., 1989, 2, (2), pp. 167170.
    13. 13)
      • 3. Sun, D., Roth, S., Black, M.J.: ‘Secrets of optical ow estimation and their 220 principles’. Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, June 2010, pp. 24322439.
    14. 14)
      • 15. Murio, D., Meja, C.E., Zhan, S.: ‘Discrete mollification and automatic numerical differentiation’, Comput. Math. Appl., 1998, 35, (5), pp. 116.
    15. 15)
      • 11. Chartrand, R.: ‘Numerical differentiation of noisy, non-smooth data’, ISRN Appl. Math., 2011, pp. 111, Article ID 164564.
    16. 16)
      • 20. Debrunner, C., Ahuja, N.: ‘Segmentation and factorization-based motion and structure estimation for long image sequences’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (2), pp. 206211.
    17. 17)
      • 2. Mitiche, A., Aggarwal, J.K.: ‘Computer vision analysis of image motion by variational methods’ (Springer, 2013).
    18. 18)
      • 9. Besl, P.J., Jain, R.: ‘Invariant surface characteristics for 3d object recognition in range images’, Comput. Vis. Graph. Image Process., 1986, 33, (1), pp. 3380.
    19. 19)
      • 5. Mitiche, A., Mathlouthi, Y., Ben Ayed, I.: ‘Monocular concurrent recovery of structure and motion scene flow’, Front. ICT Comput. Image Anal., 2015, 2, pp. 116.
    20. 20)
      • 12. Hanke, M., Scherzer, O.: ‘Inverse problems light: numerical differentiation’, The Am. Math. Mon., 2001, 108, (6), pp. 512521.
    21. 21)
      • 6. Heinrich, M.P., Jenkinson, M., Bhushan, M., et al: ‘Mind: modality independent neighborhood descriptor for multi-modal deformable registration’, Med. Image Anal., 2012, 16, (7), pp. 14231435.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0369
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0369
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address