Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Bionic RSTN invariant feature extraction method for image recognition and its application

It is significant to extract rotation, scaling, translation, and noise (RSTN) invariant features inspired by biological vision for image recognition. A bionic RSTN-invariant feature extraction are proposed. This extraction process comprises two stages. In the first stage, a novel orientation edge detection is designed based on a filter-to-filter scheme. Gabor filters, a bottom filter, smoothen an image by simulating biological vision. Bipolar filters, a top filter, detect the horizontal and vertical direction orientation edge by simulating vision cortex response. After obtaining the orientation edge of the image, an interval detector is executed by a spatial frequency of different direction and distance. Then, the interval detection results are transformed into pixels of the orientation-interval feature map. RSTN invariant features are generated through the repetition of orientation edge detection and interval detection. Several experimental results demonstrate that RSTN-invariant features have striking robustness, and capable to classify RSTN images. Finally, bionic invariant features are practiced in traffic sign recognition.

References

    1. 1)
      • 7. Graham, N.V.: ‘Beyond multiple pattern analysers modelled as linear filters (as classical V1 simple cells): Useful additions of the last 25 years’, Vis. Res., 2011, 51, (13), pp. 13971430.
    2. 2)
      • 16. Hu, M.K.: ‘Visual pattern recognition by moment invariants’, IRE Trans. Inf. Theory, 1962, 8, (2), pp. 179187.
    3. 3)
      • 10. Zhang, J., Liang, J., Zhang, C., et al: ‘Scale invariant texture representation based on frequency decomposition and gradient orientation’, Pattern Recogn. Lett., 2015, 51, (1), pp. 5762.
    4. 4)
      • 27. Rolls, E.T.: ‘Invariant visual object and face recognition: Neural and computational bases, and a model VisNet’, Front. Comput. Neurosci., 2012, 6, (35), pp. 170.
    5. 5)
      • 19. Chen, J., Zhang, X.B., Xu, Y.Q.: ‘SIFT and preserving topology structures of local neighbourhood: matching feature point in deformation measurement of nonrigid biological tissues from magnetic resonance images’, Journal of Medical Imaging And Health Informatics, 2015, 5, (3), pp. 477485.
    6. 6)
      • 26. Cao, Y., Chen, Y., Khosla, D.: ‘Spiking deep convolutional neural networks for energy-efficient object recognition’, Int. J. Comput. Vis., 2015, 113, (1), pp. 5466.
    7. 7)
      • 35. Stallkampa, J., Schlipsinga, M., Salmena, J., et al: ‘Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition’, Neural Networks, 2012, 32, pp. 323332.
    8. 8)
      • 20. Nanni, L., Brahnam, S., Ghidoni, S., et al: ‘Improving the descriptors extracted from the co-occurrence matrix using preprocessing approaches’, Expert Systems with Applications, 2015, 42, (22), pp. 89899000.
    9. 9)
      • 25. Ngoc-Son, V., Thanh, P.N.: ‘Christophe Garcia. Improving texture categorization with biologically-inspired filtering’, Image and Vision Computing, 2014, 32, (6-7), pp. 424436.
    10. 10)
      • 30. Lu, Y., Kang, T., Zhang, H., et al: ‘Enhanced hierarchical model of object recognition based on a novel patch selection method in salient regions’, IET Computer Vision, 2015, 9, (5), pp. 663672.
    11. 11)
      • 22. Hong, X., Zhao, G., Pietikäinen, M., et al: ‘Combining LBP difference and feature correlation for texture description’, IEEE Transactions on Image Processing, 2014, 23, (6), pp. 25572568.
    12. 12)
      • 17. Farokhi, S., Shamsuddin, S.M., Flusser, J., et al: ‘Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis’, Journal of Electronic Imaging, 2013, 22, (1), pp. 111.
    13. 13)
      • 24. Shih, H.C., Yu, K.C.: ‘Aggregation Map (SPLAM): A new descriptor for robust template matching with fast algorithm’, Pattern Recogn., 2015, 48, (5), pp. 17071723.
    14. 14)
      • 21. Sebastian, H., Andreas, U.: ‘A scale- and orientation-adaptive extension of Local Binary Patterns for texture classification’, Pattern Recogn., 2015, 48, (8), pp. 26332644.
    15. 15)
      • 13. Franklin, S.W., Rajan, S.E.: ‘Retinal vessel segmentation employing ANN technique by Gabor and moment invariants-based features’, Appl. Soft Comput., 2014, 22, pp. 94100.
    16. 16)
      • 18. Azeem, A., Sharif, M., Shah, J.H., et al: ‘Hexagonal scale invariant feature transform (H-SIFT) for facial feature extraction’, Journal of Applied Research and Technology, 2015, 13, (3), pp. 402408.
    17. 17)
      • 14. Shi, Y., Yang, X., Guo, Y.: ‘Translation invariant directional framelet transform combined with Gabor filters for image denoising’, IEEE Trans. Image Process., 2014, 23, (1), pp. 4455.
    18. 18)
      • 31. Ghodrati, M., Khaligh-Razavi, S.M., Ebrahimpour, R., et al: ‘How can selection of biologically inspired features improve the performance of a robust object recognition model’, PLoS ONE, 2012, 7, (2), pp. e32357.
    19. 19)
      • 4. Poggio, T., Serre, T.: ‘Models of visual cortex’, Scholarpedia, 2013, 8, (4), pp. 3516.
    20. 20)
      • 12. Mennesson, J., Saint-Jean, C., Mascarilla, L.: ‘Color Fourier-Mellin descriptors for image recognition’, Pattern Recogn. Lett., 2014, 40, pp. 2735.
    21. 21)
      • 11. Jérémie, B., Fabrice, G., Myriam, V.: ‘Estimation of translation, rotation, and scaling between noisy images using the Fourier-Mellin transform’, J. SIAM J. Imaging Sci., 2009, 2, (2), pp. 614645.
    22. 22)
      • 29. Mutch, J., Lowe, D.G.: ‘Object class recognition and localization using sparse features with limited receptive fields’, Int. J. Comput. Vis., 2008, 80, (1), pp. 4557.
    23. 23)
      • 15. Li, H., Liu, Z., Huang, Y., et al: ‘Quaternion generic Fourier descriptor for colour object recognition’, Pattern Recogn., 2015, 48, (12), pp. 38953903.
    24. 24)
      • 6. Nicolas, P., David, D.C.: ‘High-throughput-derived biologically-inspired features for unconstrained face recognition’, Image Vis. Comput., 2012, 30, (3), pp. 159168.
    25. 25)
      • 3. Riesenhuber, M., Poggio, T.: ‘Hierarchical models of object recognition in cortex’, Nat. Neurosci., 1999, 2, pp. 10191025.
    26. 26)
      • 8. Sountsov, P., Santucci, D.M., Lisman, J.E.: ‘A biologically plausible transform for visual recognition that is invariant to translation, scale, and rotation’, Front. Comput. Neurosci., 2011, 5, pp. 17.
    27. 27)
      • 32. Serre, T., Wolf, L., Poggio, T.: ‘Object recognition with features inspired by visual cortex’. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, 2005, vol. 2, pp. 9941000.
    28. 28)
      • 1. Ramesh, B., Xiang, C., Lee, T.H.: ‘Shape classification using invariant features and contextual information in the bag-of-words model’, Pattern Recogn., 2015, 48, (3), pp. 894906.
    29. 29)
      • 34. Dacey, D., Packer, O.S., Diller, L., et al: ‘Center surround receptive field structure of cone bipolar cells in primate retina’, Vision Research, 2000, 40, (14), pp. 18011811.
    30. 30)
      • 23. Qi, X., Shen, L., Zhao, G., et al: ‘Globally rotation invariant multi-scale co-occurrence local binary pattern’, Image and Vision Computing, 2015, 43, pp. 1626.
    31. 31)
      • 9. Liu, K., Skibbe, H., Schmidt, T., et al: ‘Rotation-invariant HOG descriptors using Fourier analysis in polar and spherical coordinates’, Int. J. Comput. Vis., 2013, 106, (3), pp. 342364.
    32. 32)
      • 2. Rolls, E.T., Webb, T.J.: ‘Finding and recognizing objects in natural scenes: complementary computations in the dorsal and ventral visual systems’, Front. Comput. Neurosci., 2014, 8, (85), pp. 119.
    33. 33)
      • 33. Mehrotra, R., Namuduri, K.R., Ranganathan, N.: ‘Gabor filter-based edge detection’, Pattern Recogn., 1992, 25, (12), pp. 14791494.
    34. 34)
      • 5. Hubel, D.H.: ‘Exploration of the primary visual cortex’, Nature, 1982, 299, (5883), pp. 515524.
    35. 35)
      • 28. Leigh, R., Edmund, T.R.: ‘Invariant visual object recognition: biologically plausible approaches’, Biological Cybernetics, 2015, 109, (4), pp. 505535.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0326
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0326
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address