http://iet.metastore.ingenta.com
1887

Combination of adaptive vector median filter and weighted mean filter for removal of high-density impulse noise from colour images

Combination of adaptive vector median filter and weighted mean filter for removal of high-density impulse noise from colour images

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a combination of adaptive vector median filter (VMF) and weighted mean filter is proposed for removal of high-density impulse noise from colour images. In the proposed filtering scheme, the noisy and non-noisy pixels are classified based on the non-causal linear prediction error. For a noisy pixel, the adaptive VMF is processed over the pixel where the window size is adapted based on the availability of good pixels. Whereas, a non-noisy pixel is substituted with the weighted mean of the good pixels of the processing window. The experiments have been carried out on a large database for different classes of images, and the performance is measured in terms of peak signal-to-noise ratio, mean squared error, structural similarity and feature similarity index. It is observed from the experiments that the proposed filter outperforms (∼1.5 to 6 dB improvement) some of the existing noise removal techniques not only at low density impulse noise but also at high-density impulse noise.

References

    1. 1)
      • 1. Tukey, J.W.: ‘Nonlinear (nonsuperposable) methods for smoothing data’, Congress Res. Eascon Record., 1974, 673.
    2. 2)
      • 2. Tukey, J.W.: ‘Exploratory data analysis’ (Addision-Wesley, 1997), pp. 673.
    3. 3)
      • 3. Astola, J., Haavisto, P., Neuvo, Y.: ‘Vector median filters’, Proc. IEEE, 1990, 78, (4), pp. 678689.
    4. 4)
      • 4. Ko, S.J., Lee, Y.H.: ‘Center weighted median filters and their applications to image enhancement’, IEEE Trans. Circuits Syst., 1991, 38, (9), pp. 984993.
    5. 5)
      • 5. Lukac, R., Smolka, B.: ‘Application of the adaptive center – weighted vector median framework for the enhancement of C DNA microarray images’, Int. J. Appl. Math. Comput. Sci., 2003, 13, (3), pp. 369383.
    6. 6)
      • 6. Jin, L., Li, D.: ‘A switching vector median filter based on the CIELAB color space for color image restoration’, Signal Process., 2007, 87, (6), pp. 13451354.
    7. 7)
      • 7. Xu, J., Wang, L., Shi, Z.: ‘A switching weighted vector median filter based on edge detection’, Signal Process., 2014, 98, pp. 359369.
    8. 8)
      • 8. Singh, K.M., Bora, P.K.: ‘Switching vector median filters based on non-causal linear prediction for detection of impulse noise’, Imaging Sci. J., 2014, 62, (6), pp. 313326.
    9. 9)
      • 9. Laskar, R.H., Bhowmick, B., Biswas, R., et al: ‘Removal of impulse noise from color image’. IEEE TENCON 2009 – Region 10 Conf., 2009, pp. 15.
    10. 10)
      • 10. Smolka, B., Lukac, R., Chydzinski, A., et al: ‘Fast adaptive similarity based impulsive noise reduction filter’, Real-Time Imaging, 2003, 9, (4), pp. 261276.
    11. 11)
      • 11. Fabijańska, A., Sankowski, D.: ‘Noise adaptive switching median-based filter for impulse noise removal from extremely corrupted images’, IET Image Process., 2011, 5, pp. 472480.
    12. 12)
      • 12. Meher, S.K., Singhawat, B.: ‘An improved recursive and adaptive median filter for high density impulse noise’, AEUE – Int. J. Electron. Commun., 2014, 68, (12), pp. 11731179.
    13. 13)
      • 13. Roy, A., Laskar, R.H.: ‘Non-casual linear prediction based adaptive filter for removal of high density impulse noise from color images’, AEUE – Int. J. Electron. Commun., 2017, 72, pp. 114124.
    14. 14)
      • 14. Jafar, I.F., Alna'Mneh, R.a., Darabkh, K.a.: ‘Efficient improvements on the BDND filtering algorithm for the removal of high-density impulse noise’, IEEE Trans. Image Process., 2013, 22, (3), pp. 12231232.
    15. 15)
      • 15. Esakkirajan, S., Veerakumar, T., Subramanyam, A.N., et al: ‘Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter’, IEEE Signal Process. Lett., 2011, 18, (5), pp. 287290.
    16. 16)
      • 16. Bhadouria, V.S., Ghoshal, D., Siddiqi, A.H.: ‘A new approach for high density saturated impulse noise removal using decision-based coupled window median filter’, Signal Image Video Process., 2014, 8, (1), pp. 7184.
    17. 17)
      • 17. Ahmed, F., Das, S.: ‘Removal of high-density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean’, IEEE Trans. Fuzzy Syst., 2014, 22, (5), pp. 13521358.
    18. 18)
      • 18. Schulte, S., De Witte, V., Nachtegael, M., et al: ‘Histogram-based fuzzy colour filter for image restoration’, Image Vis. Comput., 2007, 25, (9), pp. 13771390.
    19. 19)
      • 19. Wu, J., Tang, C.: ‘Random-valued impulse noise removal using fuzzy weighted non-local means’, Signal, Image Video Process., 2012, 8, (2), pp. 349355.
    20. 20)
      • 20. Masood, S., Hussain, A., Jaffar, M.A., et al: ‘Color difference based Fuzzy filter for extremely corrupted color Images’, Appl. Soft Comput., 2014, 21, pp. 107118.
    21. 21)
      • 21. Roy, A., Laskar, R.H.: ‘Impulse noise removal based on SVM classification’. IEEE TENCON 2015 – Region 10 Conf., 2015, pp. 15.
    22. 22)
      • 22. Roy, A., Laskar, R.H.: ‘Multiclass SVM based adaptive filter for removal of high density impulse noise from color images’, Appl. Soft Comput., 2015, 46, pp. 816826.
    23. 23)
      • 23. Roy, A., Singha, J., Devi, S.S., et al: ‘Impulse noise removal using SVM classification based fuzzy filter from gray scale images’, Signal Process., 2016, 128, pp. 262273.
    24. 24)
      • 24. Chan, R.H., Ho, C.W., Nikolova, M.: ‘Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization’, IEEE Trans. Image Process., 2005, 14, (10), pp. 14791485.
    25. 25)
      • 25. Chan, R.H., Ho, C.W., Nikolova, M.: ‘An iterative procedure for removing random-valued impulse noise’, IEEE Signal Process. Lett., 2004, 11, (12), pp. 921924.
    26. 26)
      • 26. Singh, K.M.: ‘Vector median filter based on non-causal linear prediction for detection of impulse noise from images’, Int. J. Comput. Sci. Eng., 2012, 7, (4), pp. 345355.
    27. 27)
      • 27. Hosseini, H., Hessar, F., Member, S., et al: ‘Real-time impulse noise suppression from images using an efficient weighted-average filtering’, IEEE Signal Process. Lett., 2015, 22, (8), pp. 10501054.
    28. 28)
      • 28. www.imageprocessingplace.com.
    29. 29)
      • 29. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: From error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    30. 30)
      • 30. Hassan, M., Bhagvati, C.: ‘Structural similarity measure for color images’, Int. J.Comput. Appl., 2012, 43, (14), pp. 712.
    31. 31)
      • 31. Zhang, L., Zhang, L., Mou, X., et al: ‘FSIM: a feature similarity index for image quality assessment’, IEEE Trans. Image Process., 2011, 20, (8), pp. 23782386.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0320
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0320
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address