http://iet.metastore.ingenta.com
1887

Efficient frame-level bit allocation algorithm for H.265/HEVC

Efficient frame-level bit allocation algorithm for H.265/HEVC

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Rate control (RC) plays a critical role in video coding for regulating the coded bit-stream to achieve the target bitrate, which involves two basic steps: bit allocation (BA) and quantisation parameter selection. Here, the former is a key element to directly affect the performance of RC. So, in this study, an efficient frame-level BA algorithm is proposed for the latest video coding standard H.265/high-efficiency video coding (HEVC). First, by analysing the optimisation problem of the frame-level BA, two factors have been found to be related to the frame-level BA, which are inter-frame dependency and the target bitrate. Then, a measure of inter-frame dependency is put forward to reflect the correlation among consecutive frames. Finally, according to the results of allocation weights through the dynamic programming method, the relationships among the allocation weights and the two factors are investigated, and based on which the efficient BA model is established. Experimental results show that in comparison with the original RC scheme in HM-14.0, the proposed frame-level BA algorithm reduces, on average, BD-rate by 5.19% with negligible encoding time increase. In addition, the proposed algorithm also achieves higher GOP-level RC accuracy compared with the original RC scheme in HM.

References

    1. 1)
      • 1. Generic coding of moving pictures and associated audio information – part 2: video’, ITU-T Rec. H.262 and ISO/IEC 13818-2 (MPEG 2 Video), ITU-T and ISO/IEC JTC 1, November 1994.
    2. 2)
      • 2. Test Model 5. Available at http://www.mpeg.org/MPEG/MSSG/tm5/.
    3. 3)
      • 3. Video coding for low bit rate communication’, ITU-T Rec. H.263, November 1995.
    4. 4)
      • 4. Corbera, J., Lei, S.: ‘Rate control for low-delay video communications’. ITU-T Study Group 16, Video Coding Expert Group (VCEG). Document Q15-A-20, Portland, OR, USA, 1997.
    5. 5)
      • 5. Coding of audio-visual objects – part 2: visual’, ISO/IEC 14496-2 (MPEG-4 Visual version 1), ISO/IEC JTC 1, April 1999.
    6. 6)
      • 6. Lee, H.-J., Chiang, T., Zhang, Y.-Q.: ‘Scalable rate control for MPEG-4 video’, IEEE Trans. Circuits Syst. Video Technol., 2000, 10, (6), pp. 878894.
    7. 7)
      • 7. Wiegand, T., Sullivan, G.J., Bj, øntegaard, G., et al: ‘Overview of the H.264/AVC video coding standard’, IEEE Trans. Circuits Syst. Video Technol., 2003, 13, (7), pp. 560576.
    8. 8)
      • 8. Li, Z.G., Pan, F., Lim, K.P., et al: ‘Adaptive basic unit layer rate control for JVT’. Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, Document JVT-G012, Pattaya, Thailand, 2003.
    9. 9)
      • 9. Sullivan, G.J., Ohm, J., Han, W.-J., et al: ‘Overview of the high efficiency video coding (HEVC) standard’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 16491668.
    10. 10)
      • 10. Choi, H., Nam, J., Yoo, J., et al: ‘Rate control based on unified RQ model for HEVC’. Proc. Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0213, San Jose, CA, USA, 2012.
    11. 11)
      • 11. Li, B., Li, H., Li, L., et al: ‘Rate control by R-lambda model for HEVC’. Proc. Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-K0103, Shanghai, China, 2012.
    12. 12)
      • 12. HM, HEVC Test Model. Available at http://www.hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/.
    13. 13)
      • 13. Pang, C., Au, O.C., Zou, F., et al: ‘An analytic framework for frame-level dependent bit allocation in hybrid video coding’, IEEE Trans. Circuits Syst. Video Technol., 2013, 23, (6), pp. 9901002.
    14. 14)
      • 14. Liu, S., Kuo, C.-C.J.: ‘Joint temporal-spatial bit allocation for video coding with dependency’, IEEE Trans. Circuits Syst. for Video Technol., 2005, 15, (1), pp. 1526.
    15. 15)
      • 15. Liu, J., Cho, Y., Guo, Z., et al: ‘Bit allocation for spatial scalability coding of H.264/SVC with dependent rate-distortion analysis’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (7), pp. 967981.
    16. 16)
      • 16. Hu, S., Kwong, S., Zhao, T., et al: ‘Rate control optimization for temporal-layer scalable video coding’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (8), pp. 11521162.
    17. 17)
      • 17. Schwarz, H., Marpe, D., Weigand, T.: ‘Overview of the scalable video coding extension of the H.264/AVC standard’, IEEE Trans. Circuits Syst. Video Technol., 2007, 17, (9), pp. 11031120.
    18. 18)
      • 18. Li, B., Li, H., Li, L., et al: ‘Lambda domain rate control algorithm for high efficiency video coding’, IEEE Trans. Image Process., 2014, 23, (9), pp. 38413854.
    19. 19)
      • 19. Li, B., Li, H., Li, L.: ‘Adaptive bit allocation for R-lambda model rate control in HM’. Proc. Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-M0036, Incheon, KR, 2013.
    20. 20)
      • 20. Bossen, F.: ‘Common test conditions and software reference configurations’. Proc. Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J1100, Stockholm, Sweden, 2012.
    21. 21)
      • 21. Schwarz, H., Marpe, D., Wiegand, T.: ‘Analysis of hierarchical B pictures and MCTF’. Proc. IEEE Int. Conf. on Multimedia and Expo, 2006, pp. 19291932.
    22. 22)
      • 22. Wan, W., Chen, Y., Wang, Y.-K., et al: ‘Efficient hierarchical inter picture coding for H.264/AVC baseline profile’. Proc. Picture Coding Symp., 2009, pp. 14.
    23. 23)
      • 23. Sullivan, G.J., Wiegand, T.: ‘Rate-distortion optimization for video compression’, IEEE Signal Process. Mag., 1998, 15, (6), pp. 7490.
    24. 24)
      • 24. Reininger, R., Gibson, J.D.: ‘Distributions of the two-dimensional DCT coefficients for images’, IEEE Trans. Commun., 1983, 31, (6), pp. 835839.
    25. 25)
      • 25. Chiang, T., Zhang, Y.-Q.: ‘A new rate control scheme using quadratic rate distortion model’, IEEE Trans. Circuits Syst. Video Technol., 1997, 7, (1), pp. 246250.
    26. 26)
      • 26. Bjontegaard, G.: ‘Calculation of average PSNR differences between RD curves’. ITU-T Study Group 16, Video Coding Expert Group (VCEG). Document VCEG-M33, Austin, TX, USA, April 2001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0166
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address