Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Denoising model for parallel magnetic resonance imaging images using higher-order Markov random fields

This study presents a novel robust method for Bayesian denoising of parallel magnetic resonance imaging (pMRI) images. For the first time, the authors’ proposal applies fields of experts (FoE), a filter-based higher-order Markov random field (MRF), to model the prior of the pMRI image statistics. The noise in pMRI data behaves to be non-central Chi (nc-χ) distributed. In practice, correlation between coils exists, resulting in that nc-χ distribution does not hold anymore and the spatially varying noise problem. Thus, preservation of fine textures requires to adapt locally the estimation. Therefore, more precisely, the noise is reduced by using a sliding window scheme. In each window, the likelihood probability function is accurately modelled from corrupted data by using an innovative Gaussian mixture model (GMM). The parameters of GMM are calculated by applying an iterative expectation maximisation approach. With the priors via the learned FoE model and the likelihood function via GMM, a maximum a posteriori (MAP) estimator is formulated. Then, the noise in the each window is filtered by applying an efficient non-linear quasi-Newton method to explore an optimal solution for the MAP estimator. Finally, experiments have been conducted on both the simulated and real data to compare the proposed model with some state-of-the-art denoising methods. The experimental results demonstrate the robustness and effectiveness of the proposed denoising model.

References

    1. 1)
      • 1. Griswold, M.A., et al: ‘Generalized autocalibrating partially parallel acquisitions (GRAPPA)’, Magn. Reson. Med., 2002, 47, pp. 12021210.
    2. 2)
      • 30. Dempster, A.P., Laird, N.M., Rubin, D.B.: ‘Maximum likelihood from incomplete data via the EM algorithm’, J. R. Stat. Soc. B Stat., 1977, 39, pp. 138.
    3. 3)
      • 31. Liu, D.C., Nocedal, J.: ‘On the limited memory BFGS method for large scale optimization’, Math. Program., 1989, 45, pp. 503528.
    4. 4)
      • 16. Erturk, M.A., Bottomley, P.A., El-Sharkawy, A.M.: ‘Denoising MRI using spectral subtraction’, IEEE Trans. Biomed. Eng., 2013, 60, pp. 15561562.
    5. 5)
      • 13. Maggioni, M., Katkovnik, V., Egiazarian, K., et al: ‘A nonlocal transform-domain filter for volumetric data denoising and reconstruction’, IEEE Trans. Image Process., 2013, 22, pp. 119133.
    6. 6)
      • 33. Marsaglia, G., Tsang, W., Wang, J.: ‘Evaluating Kolmogorov's distribution’, J. Stat. Softw., 2003, 8, (18), pp. 14.
    7. 7)
      • 25. Hinton, G.: ‘Product of experts’, ICANN, 1999, 1, pp. 16.
    8. 8)
      • 6. Aja-Fernández, S., Vegas-Sánchez-Ferrero, G., Tristán-Vega, A.: ‘Noise estimation in parallel MRI: GRAPPA and SENSE’, Magn. Reson. Imaging, 2014, 32, pp. 281290.
    9. 9)
      • 4. Dietrich, O., Raya, J.G., Reeder, S.B., et al: ‘Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics’, Magn. Reson. Imaging, 2008, 26, pp. 754762.
    10. 10)
      • 17. Aja-Fernández, S., Brion, V., Tristán-Vega, A.: ‘Effective noise estimation and filtering from correlated multiple-coil MR data’, Magn. Reson. Imaging, 2013, 31, pp. 272285.
    11. 11)
      • 2. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., et al: ‘SENSE: sensitivity encoding for fast MRI’, Magn. Reson. Med., 1999, 42, pp. 952962.
    12. 12)
      • 12. Manjón, J.V., Coupé, P., Buades, A., et al: ‘New methods for MRI denoising based on sparseness and self-similarity’, Med. Image Anal., 2012, 16, pp. 1827.
    13. 13)
      • 7. Aja-Fernández, S., Alberola-Lopez, C., Westin, C.F.: ‘Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach’, IEEE Trans. Image Process., 2008, 17, pp. 13831398.
    14. 14)
      • 20. Manjon, J.V., Coupé, P., Martí-Bonmatí, L., et al: ‘Adaptive non-local means denoising of MR images with spatially varying noise levels’, J. Magn. Reson. Imaging, 2010, 31, pp. 192203.
    15. 15)
      • 15. Erturk, M.A., Bottomley, P.A., El-Sharkawy, A.M.: ‘Spectral subtraction denoising of MRI’. Proc. 6th Cairo Int. Biomedical Engineering Conf., Cairo, Egypt, 2012, pp. 138141.
    16. 16)
      • 29. Kwan, R.K.S., Evans, A.C., Pike, G.B.: ‘MRI simulation-based evaluation of image-processing and classification methods’, IEEE Trans. Med. Imaging, 2009, 18, pp. 10851097.
    17. 17)
      • 36. Zhang, X.D., Feng, X.C., Wang, W.W., et al: ‘Edge strength similarity for image quality assessment’, IEEE Signal Process. Lett., 2013, 20, pp. 319322.
    18. 18)
      • 14. Liu, R.W., Shi, L., Huang, W., et al: ‘Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters’, Magn. Reson. Imaging, 2014, 32, pp. 702720.
    19. 19)
      • 10. He, L., Greenshields, I.R.: ‘A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images’, IEEE Trans. Med. Imaging, 2009, 28, pp. 165172.
    20. 20)
      • 22. Xu, L., Wang, C.Q., Chen, W.F., et al: ‘Denoising multi-channel images in parallel MRI by low rank matrix decomposition’, IEEE Trans. Appl. Supercond., 2014, 24, p. 060015.
    21. 21)
      • 11. Wong, A., Mishra, A.K.: ‘Quasi-monte carlo estimation approach for denoising MRI data based on regional statistics’, IEEE Trans. Biomed. Eng., 2011, 58, pp. 10761083.
    22. 22)
      • 35. Chen, G.H., Yang, C.L., Po, L.M., et al: ‘Edge-based structural similarity for image quality assessment’. IEEE ICASSP, 2006.
    23. 23)
      • 3. Aja-Fernandez, S., Tristan-Vega, A., Hoge, S.: ‘Statistical noise analysis in GRAPPA using a parametrized non-central chi approximation model’, Magn. Reson. Med., 2011, 65, pp. 11951206.
    24. 24)
      • 23. Li, S.Z.: ‘Markov random field modeling in image analysis’ (Springer, 2009, 3rd edn.).
    25. 25)
      • 5. Thunberg, P., Zetterberg, P.: ‘Noise distribution in SENSE-and GRAPPA-reconstructed images: a computer simulation study’, Magn. Reson. Imaging, 2007, 25, pp. 10891094.
    26. 26)
      • 24. Roth, S., Black, M.J.: ‘Fields of experts’, Int. J. Comput. Vis., 2009, 82, pp. 205229.
    27. 27)
      • 18. Aja-Fernándeza, S., Pieciakb, T., Vegas-Sánchez-Ferreroc, G.: ‘Spatially variant noise estimation in MRI: a homomorphic approach’, Med. Image Anal., 2015, 20, pp. 184197.
    28. 28)
      • 21. Manjon, J.V., Coupé, P., Buades, A.: ‘MRI noise estimation and denoising using non-local PCA’, Med. Image Anal., 2015, 22, pp. 3547.
    29. 29)
      • 28. Chen, Y., Ranftl, R., Pock, T.: ‘Insights into analysis operator learning: From patch-based sparse models to higher order MRFs’, IEEE Trans. Image Process., 2014, 23, pp. 10601072.
    30. 30)
      • 19. Rajan, J., Veraart, J., Audekerke, J.V., et al: ‘Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images’, Magn. Reson. Imaging, 2012, 30, pp. 15121518.
    31. 31)
      • 34. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: From error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, pp. 600612.
    32. 32)
      • 27. Chen, Y., Pock, T., Ranftl, R., et al: ‘Revisiting loss-specific training of filter-based MRFs for image restoration’. Proc. 35th German Conf., GCPR, 2013, pp. 271281.
    33. 33)
      • 32. Epperson, K., Sawyer, A.M., Lustig, M., et al: ‘Creation of fully sampled MR data repository for compressed sensing of the knee’. SMRT Conf., Salt Lake City, UT, 2013.
    34. 34)
      • 9. Awate, S.P., Whitaker, R.T.: ‘Feature-preserving MRI denoising: a nonparametric empirical Bayes approach’, IEEE Trans. Med. Imaging, 2007, 26, pp. 12421255.
    35. 35)
      • 26. Samuel, K.G.G., Tappen, M.: ‘Learning optimized MAP estimates in continuously-valued MRF models’. Proc. IEEE CVPR 2009, 2009, pp. 477484.
    36. 36)
      • 8. Coupé, P., Yger, P., Prima, S., et al: ‘An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images’, IEEE Trans. Med. Imaging, 2008, 27, pp. 425441.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0141
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address