Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Segmentation of the right ventricle in MRI images using a dual active shape model

Active shape models (ASM) showed to have potential for segmenting the right ventricle (RV) in cardiac magnetic resonance images (MRIs). Nevertheless, the large variability and complexity of the RV shape do not allow for concisely capturing all possible shape variations among patients and anatomical cross-sections. Noticeably, the latter increases the number of iterations required to converge to a proper solution and reduces the segmentation accuracy. In this study, the authors propose a new ASM framework that can model the RV shape in short-axis cardiac MRI images. In this framework, the RV contour is split into two simpler segments, septal (SP) and free wall, whose shape variations are independently modelled using two separate (dual) ASM models. The contour splitting is done at the location of the RV insertion points into the SP wall. Further, instead of using the conventional Procrustes method, the RV contours are aligned using the Bookstein coordinate transformation, which uses the RV insertion points as landmarks to linearly align the RV contours. The results from a dataset of 14 patients show that the proposed framework outperforms the conventional ASM framework and can model complex RV shape variation with more accuracy and in less iteration steps.

References

    1. 1)
      • 30. Clarysse, P., Friboulet, D., Magnin, I.E.: ‘Tracking geometrical descriptors on 3-D deformable surfaces: application to the left-ventricular surface of the heart’, IEEE Trans. Med. Imaging, 1997, 16, (4), pp. 392404.
    2. 2)
      • 40. Bookstein, F.: ‘Size and shape spaces for landmark data in two dimensions’, Stat. Sci., 1986, 1, (2), pp. 181222.
    3. 3)
      • 41. Zhang, J.-Z., Xu, C.-X.: ‘Trust region dogleg path algorithms for unconstrained minimization’, Ann. Oper. Res., 1999, 87, (0), pp. 407418.
    4. 4)
      • 24. Benayoun, S., Ayache, N.: ‘Dense Non-Rigid Motion Estimation in Sequences of Medical Images Using Differential Constraints’, Int. J. Comput. Vis., 1998, 26, (1), pp. 2540.
    5. 5)
      • 17. ElBaz, M., Fahmy, A.: ‘Active shape model with inter-profile modeling paradigm for cardiac right ventricle segmentation’, Med. Image Comput. Comput. Interv. – MICCAI, 2012, 7510, pp. 691698.
    6. 6)
      • 43. Babalola, K.O., Patenaude, B., Aljabar, P., et al: ‘An evaluation of four automatic methods of segmenting the subcortical structures in the brain’, Neuroimage, 2009, 47, (4), pp. 14351447.
    7. 7)
      • 21. Frangi, A.F., Niessen, W.J., Viergever, M.A.: ‘Three-dimensional modeling for functional analysis of cardiac images: a review’, IEEE Trans. Med. Imaging, 2001, 20, (1), pp. 225.
    8. 8)
      • 19. Ordas, S., Boisrobert, L., Huguet, M., et al: ‘Active shape models with invariant optimal features (IOF-ASM) application to cardiac MRI segmentation’. Comput. Cardiol., 2003, pp. 633636.
    9. 9)
      • 1. Voelkel, N.F., Quaife, R.A., Leinwand, L.A., et al: ‘Right ventricular function and failure: report of a national heart, lung, and blood institute working group on cellular and molecular mechanisms of right heart failure’, Circulation, 2006, 114, (17), pp. 18831891.
    10. 10)
      • 18. van Ginneken, B., Frangi, A.F., Staal, J.J., et al: ‘Active shape model segmentation with optimal features’, IEEE Trans. Med. Imaging, 2002, 21, (8), pp. 924933.
    11. 11)
      • 4. de Groote, P., Millaire, a., Foucher-Hossein, C., et al: ‘Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure’, J. Am. Coll. Cardiol., 1998, 32, (4), pp. 948954.
    12. 12)
      • 5. Grosgeorge, D., Petitjean, C., Caudron, J., et al: ‘Automatic cardiac ventricle segmentation in MR images: a validation study’, Int. J. Comput. Assist. Radiol. Surg., 2011, 6, (5), pp. 573581.
    13. 13)
      • 11. Pluempitiwiriyawej, C.: ‘Cardiac MR image segmentation: quality assessment of STACS’. IEEE Int. Symp. on Biomedical: Imaging Macro to Nano, 2004, (2), pp. 828831.
    14. 14)
      • 36. Hirose, K., Reed, J.E., Rumberger, J.A.: ‘Serial changes in regional right ventricular free wall and left ventricular septal wall lengths during the first 4 to 5 years after index anterior wall myocardial infarction’, J. Am. Coll. Cardiol., 1995, 26, (2), pp. 394400.
    15. 15)
      • 15. Petitjean, C., Zuluaga, M.A., Bai, W., et al: ‘Right ventricle segmentation from cardiac MRI: a collation study’, Med. Image Anal., 2015, 19, (1), pp. 187202.
    16. 16)
      • 38. Walmsley, J., Huntjens, P.R., Prinzen, F.W., et al: ‘Septal flash and septal rebound stretch have different underlying mechanisms’., Am. J. Physiol. Heart Circ. Physiol., 2015, 310, (3), pp. 394403.
    17. 17)
      • 45. Dice, L.R.: ‘Measures of the amount of ecologic association between species’, Ecology, 1945, 26, (3), pp. 297302.
    18. 18)
      • 34. Cootes, T., Hill, A., Taylor, C., et al: ‘The use of active shape models for locating structures in medical images’, Inf. Process. Med. Imaging, 2005, 687, pp. 3347.
    19. 19)
      • 42. Andreopoulos, A., Tsotsos, J.K.: ‘Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI’, Med. Image Anal., 2008, 12, (3), pp. 335357.
    20. 20)
      • 10. Mahapatra, D., Buhmann, J.M.: ‘Automatic cardiac RV segmentation using semantic information with graph cuts’. 2013 IEEE Tenth Int. Symp. on Biomedical Imaging, 2013, pp. 11061109.
    21. 21)
      • 29. Nastar, C., Ayache, N.: ‘Frequency-based nonrigid motion analysis: Application to four dimensional medical images’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, (11), pp. 10671079.
    22. 22)
      • 39. Brinkhoff, T., Kriegel, H., Schneider, R., et al: ‘Measuring the complexity of polygonal objects’. Proc. Third ACM SIGSPATIAL Int. Work. ACM Int. Work Advances in Geographic Information Systems, 1995, pp. 109117.
    23. 23)
      • 23. Huang, W., Goldgof, D.: ‘Adaptive-size meshes for rigid and nonrigid shape analysis and synthesis’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, (6), pp. 611616.
    24. 24)
      • 22. Perperidis, D., Mohiaddin, R., Rueckert, D.: ‘Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification’, Med. Image Comput. Comput. Interv. – MICCAI, 2005, 3750, pp. 402410.
    25. 25)
      • 16. Zhang, H., Wahle, A., Johnson, R.K., et al: ‘4-D cardiac MR image analysis: left and right ventricular morphology and function’, IEEE Trans. Med. Imaging, 2010, 29, (2), pp. 350364.
    26. 26)
      • 37. Leenders, G.E., Lumens, J., Cramer, M.J., et al: ‘Septal deformation patterns delineate mechanical dyssynchrony and regional differences in contractility: analysis of patient data using a computer model’, Circ. Heart Fail., 2012, 5, (1), pp. 8796.
    27. 27)
      • 8. Maier, O., Jiménez, D., Santos, A., et al: ‘Segmentation of RV in 4D Cardiac MR Volumes using Region-Merging Graph Cuts’, in Computing in Cardiology (CinC), 2012, pp. 697700.
    28. 28)
      • 9. Punithakumar, K., Noga, M., Ben Ayed, I., et al: ‘Right ventricular segmentation in cardiac MRI with moving mesh correspondences’, Comput. Med. Imaging Graph., 2015, 43, pp. 1525.
    29. 29)
      • 27. Friboulet, D., Magnin, I., Revel, D.: ‘Assessment of a model for overall left ventricular three-dimensional motion from MRI data’, Int. J. Card. Imaging, 1992, 8, (3), pp. 175190.
    30. 30)
      • 32. Staib, L.H., Duncan, J.S.: ‘Model-based deformable surface finding for medical images’, IEEE Trans. Med. Imaging, 1996, 15, (5), pp. 720731.
    31. 31)
      • 3. Haddad, F., Doyle, R., Murphy, D.J., et al: ‘Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure’, Circulation, 2008, 117, (13), pp. 17171731.
    32. 32)
      • 13. Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Elkington, A.G., et al: ‘Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm’, Med. Image Anal., 2004, 8, (3), pp. 255265.
    33. 33)
      • 7. Ou, Y., Doshi, J.: ‘Multi-atlas segmentation of the cardiac MR right ventricle’. Proc. 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge, Nice, France, 2012.
    34. 34)
      • 31. Matheny, A., Goldgof, D.: ‘The use of three-and four-dimensional surface harmonics for rigid and nonrigid shape recovery and representation’, IEEE Trans. Pattern Anal. Mach. Intell., 1995, 17, (10), pp. 967981.
    35. 35)
      • 35. El-Rewaidy, H., Fahmy, A.A.S.: ‘Segmentation of the Right Ventricle in MR images using dual active shape model in the Bookstein coordinates’. 2015 IEEE 12th Int. Symp. on Biomedical Imaging (ISBI), 2015, pp. 13201323.
    36. 36)
      • 12. Sacks, M.S., Chuong, C.J., Templeton, G.H., et al: ‘In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall’, Ann. Biomed. Eng., 1993, 21, (3), pp. 263275.
    37. 37)
      • 14. Grosgeorge, D., Petitjean, C.: ‘Graph cut segmentation with a statistical shape model in cardiac MRI’, Comput. Vis. Image Underst., 2013, 117, (9), pp. 10271035.
    38. 38)
      • 25. Papademetris, X., Shi, P., Dione, D.: ‘Recovery of soft tissue object deformation from 3D image sequences using biomechanical models’, Inf. Process. Med. Imaging, 1999, 1613, pp. 352357.
    39. 39)
      • 6. Wang, C., Peng, C., Chen, H.: ‘A simple and fully automatic right ventricle segmentation method for 4-dimensional cardiac MR images’. RV Segmentation Challange in Cardiac MRI MICCAI, 2012.
    40. 40)
      • 26. Shi, P., Sinusas, A.J., Constable, R.T., et al: ‘Point-tracked quantitative analysis of left ventricular surface motion from 3-D image sequences’, IEEE Trans. Med. Imaging, 2000, 19, (1), pp. 3650.
    41. 41)
      • 28. Friboulet, D., Magnin, I., Mathieu, C.: ‘Assessment and visualization of the curvature of the left ventricle from 3D medical images’, Comput. Med. Imaging Graph., 1993, 17, (4–5), pp. 257262.
    42. 42)
      • 33. Cootes, T., Taylor, C., Cooper, D., et al: ‘Active shape models-their training and application’, Comput. Vis. Image Underst., 1995, 61, (1), pp. 3859.
    43. 43)
      • 44. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: ‘Comparing images using the Hausdorff distance’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, (9), pp. 850863.
    44. 44)
      • 20. Lötjönen, J., Kivistö, S., Koikkalainen, J.: ‘Statistical shape model of atria, ventricles and epicardium from short-and long-axis MR images’, Med. Image Comput. Comput. Interv. - MICCAI, 2004, 8, (3), pp. 371386.
    45. 45)
      • 2. Haddad, F., Hunt, S.A., Rosenthal, D.N., et al: ‘Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle’, Circulation, 2008, 117, (11), pp. 14361448.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0073
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0073
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address